File:Aa35422-19.pdf

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
Go to page
next page →
next page →
next page →

Original file(1,239 × 1,752 pixels, file size: 1.56 MB, MIME type: application/pdf, 17 pages)

Captions

Captions

A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056?

Summary[edit]

Description
English: Context. The neutrino event IceCube−170922A appears to originate from the BL Lac object TXS 0506+056. To understand the neutrino creation process and to localize the emission site, we studied the radio images of the jet at 15 GHz.

Aims. Other BL Lac objects show properties similar to those of TXS 0506+056, such as multiwavelength variability or a curved jet. However, to date only TXS 0506+056 has been identified as neutrino emitter. The aim of this paper is to determine what makes the parsec-scale jet of TXS 0506+056 specific in this respect.

Methods. We reanalyzed and remodeled 16 VLBA 15 GHz observations between 2009 and 2018. We thoroughly examined the jet kinematics and flux-density evolution of individual jet components during the time of enhanced neutrino activity between September 2014 and March 2015, and in particular before and after the neutrino event.

Results. Our results suggest that the jet is very strongly curved and most likely observable under a special viewing angle of close to zero. We may observe the interaction between jet features that cross each other’s paths. We find subsequent flux-density flaring of six components passing the likely collision site. In addition, we find a strong indication for precession of the inner jet, and model a precession period of about 10 yr via the Lense-Thirring effect. We discuss an alternative scenario, which is the interpretation of observing the signature of two jets within TXS 0506+056, again hinting toward a collision of jetted material. We essentially suggest that the neutrino emission may result from the interaction of jetted material in combination with a special viewing angle and jet precession.

Conclusions. We propose that the enhanced neutrino activity during the neutrino flare in 2014–2015 and the single EHE neutrino IceCube-170922A could have been generated by a cosmic collision within TXS 0506+056. Our findings seem capable of explaining the neutrino generation at the time of a low gamma-ray flux and also indicate that TXS 0506+056 might be an atypical blazar. It seems to be the first time that a potential collision of two jets on parsec scales has been reported and that the detection of a cosmic neutrino might be traced back to a cosmic jet-collision.
Date
Source

https://www.aanda.org/articles/aa/abs/2019/10/aa35422-19/aa35422-19.html

https://doi.org/10.1051/0004-6361/201935422
Author S. Britzen, C. Fendt, M. Böttcher, M. Zajaček, F. Jaron, I. N. Pashchenko, A. Araudo, V. Karas and O. Kurtanidze

Licensing[edit]

w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current09:59, 4 October 2019Thumbnail for version as of 09:59, 4 October 20191,239 × 1,752, 17 pages (1.56 MB)Pamputt (talk | contribs)User created page with UploadWizard

There are no pages that use this file.

Metadata