File:Sn discoveries.gif

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Sn_discoveries.gif (480 × 240 pixels, file size: 3.21 MB, MIME type: image/gif, looped, 126 frames, 38 s)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description
English: Animated gif showing the R.A. and Dec. of supernovae discovered since 1885.
 
SCP
 
High-Z
 
LOSS
 
SDSS
 
ESSENCE
 
SNLS
 
SNfactory
 
Other
Date
Source Own work
Author RCThomas
Other versions File:Supernovae discovered since 1885 (larger size).gif (previous version uploaded separately)

Licensing

[edit]
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Source Code

[edit]
 
This plot was created with Matplotlib.
 
This image was created with ImageMagick.

This is the python script I used to generate the frames for this movie. I then made the animated gif using ImageMagick convert tool.

#!/usr/bin/env python

import numpy
import pylab

import urllib

#- Fetch the plain-text, fixed-column-width version of the Asiago Supernova
#- Catalog (ASC) from the Asiago Supernova Group website.  This group tries
#- to maintain a comprehensive list of all supernovae discovered and announced 
#- publically via IAU circulars.
#-
#- Literature reference for the ASC:
#-      [Barbon et al., 1999, A&AS, 139, 531]
#-
#- The Asiago Supernova Group website is at:
#-      [http://graspa.oapd.inaf.it/]
#-
#- Another resource is the Sternberg Supernova Catalog:
#-      [http://www.sai.msu.su/sn/sncat/]

stream = urllib.urlopen( "http://graspa.oapd.inaf.it/index.php?option=com_content&view=article&id=63&Itemid=82&dir=%2Fvar%2Fwww%2Fhtml%2Fjsmallfib_top%2Fcat&download_file=jsmallfib_top%2Fcat%2Fcat.txt" )
lines = [ line.rstrip( "\n\r" ) for line in stream ]
stream.close()

lines.pop( 0 )

#- We are interested in the supernova year, R.A. and Dec., and discoverer.  The 
#- ASC has remained consistent since 1999 in formatting its plain-text edition, 
#- so in the spirit of keeping it simple we adopt the fixed fields as we find 
#- them on this day.  Notice that we read both the coordinates of the host 
#- galaxy and the supernova in each case --- the host galaxy values are needed
#- in case the supernova coordinates are not listed.

bounds = { # The following column definitions are correct as of 2010-04-20.
        "year"      : (   2,    6 ),
        "gal_ra"    : (  32,   42 ),
        "gal_dec"   : (  42,   52 ),
        "sn_ra"     : (  52,   62 ),
        "sn_dec"    : (  62,   77 ),
        "disc"      : ( 197, None ) }

#- Process each row so that the supernova R.A. and Dec. fields are in radians.
#- This means making sure that if no supernova coordinates are recorded in the
#- ASC, we substitute in the host galaxy coordinates, which will be good enough
#- for the figure we are going to make --- the error is much smaller than the 
#- size of the symbols we will use for plotting.

years = []
ras   = []
decs  = []
discs = []

for line in lines :
    if not line.rstrip() :
        continue

    # Year and discoverer are easy.
    year = int( line[ bounds[ "year" ][ 0 ] : bounds[ "year" ][ 1 ] ] )
    disc = line[ bounds[ "disc" ][ 0 ] : ]

    # Try for supernova R.A. and Decl. and use galaxy values only if needed.
    ra  = line[ bounds[ "sn_ra"  ][ 0 ] : bounds[ "sn_ra"  ][ 1 ] ].strip( ": " )
    dec = line[ bounds[ "sn_dec" ][ 0 ] : bounds[ "sn_dec" ][ 1 ] ].strip( ": " )
    if not ( ra and dec ) :
        ra  = line[ bounds[ "gal_ra"  ][ 0 ] : bounds[ "gal_ra"  ][ 1 ] ].strip( ": " )
        dec = line[ bounds[ "gal_dec" ][ 0 ] : bounds[ "gal_dec" ][ 1 ] ].strip( ": " )

    # Convert R.A. to float degrees.
    h, m, s = ra[ 0 : 2 ], ra[ 2 : 4 ], ra[ 4 : ]
    try :
        test = float( s )
    except ValueError:
        s = "00"
    ra = 15.0 * ( float( h ) + ( float( m ) + float( s ) / 60.0 ) / 60.0 )

    # Convert Dec. to float degrees.
    p, d, m, s = dec[ 0 ], dec[ 1 : 3 ], dec[ 3 : 5 ], dec[ 5 : ]
    try :
        test = float( s )
    except ValueError:
        s = "00"
    dec = float( d ) + ( float( m ) + float( s ) / 60.0 ) / 60.0
    if p != "+": dec = -dec

    # Push onto each array.
    years.append( year )
    ras.append  ( ra   )
    decs.append ( dec  )
    discs.append( disc )

years = numpy.array( years, dtype = "int" )
discs = numpy.array( discs )
ras   = numpy.radians( numpy.array( ras   ) )
decs  = numpy.radians( numpy.array( decs  ) )
ras[ ras > numpy.pi ] = ras[ ras > numpy.pi ] - 2.0 * numpy.pi

#- Colors for some selected surveys --- not exhaustive by any stretch.

colors = []
for i, disc in enumerate( discs ) :
    if "sdss" in disc.lower() :
        discs[ i ] = "SDSS"
        colors.append( "#C28800" )
    elif "loss" in disc.lower() or "lotoss" in disc.lower() :
        discs[ i ] = "LOSS"
        colors.append( "#B20050" )
    elif "hzsst" in disc.lower() :
        discs[ i ] = "High-Z"
        colors.append( "#FF9C00" )
    elif "nsf" in disc.lower() :
        discs[ i ] = "SNfactory"
        colors.append( "#06D1AE" )
    elif "essence" in disc.lower() :
        discs[ i ] = "ESSENCE"
        colors.append( "#0F00B2" )
    elif "scp" in disc.lower() :
        discs[ i ] = "SCP"
        colors.append( "#8C8458" )
    elif "cfht" in disc.lower() :
        discs[ i ] = "SNLS"
        colors.append( "#3B6642" )
    else :
        discs[ i ] = "other" # could add others here
        colors.append( "#516587" )
colors = numpy.array( colors )

#- Generate a bunch of images to be run through ImageMagick convert to make an
#- animated GIF.

uniq_years = sorted( set( years ) )

discs_used = []
color_used = []

for i, year in enumerate( range( 1885, 2011 ) ) :
    fig = pylab.figure( figsize = ( 8, 4 ), dpi = 180 )
    axes = pylab.axes( projection = "hammer" )
    axes.grid( True )
    selected = years < year
    print year,
    print selected.sum(),
    if any( selected ) :
        axes.scatter( ras[ selected ], decs[ selected ], c = colors[ selected ], edgecolors = "none", alpha = 0.5 )
    selected = years == year
    print selected.sum()
    if any( selected ) :
        axes.scatter( ras[ selected ], decs[ selected ], c = colors[ selected ], edgecolors = "none", alpha = 1.0 )
        labels = discs[ selected ]
        for disc, color in zip( discs[ selected ], colors[ selected ] ) :
            if disc == "other" :
                continue
            if disc not in discs_used :
                discs_used.append( disc  )
                color_used.append( color )
    print discs_used
    for i, disc in enumerate( discs_used ) :
        pylab.text( 0.99, 0.32 - 0.06 * i, disc, color = color_used[ i ], transform = axes.transAxes )
    pylab.title( year )
    pylab.savefig( str( year ) + ".jpg" )
    pylab.clf()

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:07, 22 April 2010Thumbnail for version as of 06:07, 22 April 2010480 × 240 (3.21 MB)RCThomas (talk | contribs)Smaller size so when it's embedded into an article it actually animates but doesn't interfere with the text by overwhelming it. No change to the source code was used; just a resize step in the convert call. Category:Supernovae
05:32, 21 April 2010Thumbnail for version as of 05:32, 21 April 2010800 × 400 (7.81 MB)RCThomas (talk | contribs){{Information |Description={{en|1=Animated gif showing the R.A. and Dec. of supernovae discovered since 1885.}} |Source={{own}} |Author=RCThomas |Date=2010-04-20 |Permission= |other_versions= }} Category:Supernovae

The following 2 pages use this file:

File usage on other wikis