File:SIM neoproto.ogv
SIM_neoproto.ogv (Ogg Theora video file, length 20 s, 512 × 480 pixels, 2.04 Mbps, file size: 4.79 MB)
Captions
Summary
[edit]DescriptionSIM neoproto.ogv |
English: In order to better understand the climatic processes that may have been responsible for producing the snowball Earth intervals and the subsequent recovery, we used the GISS GCM to conduct a series of climate simulations of the Varanger glaciation. Paleoclimate modeling presents some unique challenges not posed by climate studies of the near future, such as a reduced luminosity of the Sun. Other climate forcings such as the amount of atmospheric carbon dioxide are not well constrained by the geologic record, and so for the major climate forcings we wanted to examine, we selected arbitrary values based upon other climatological or geological considerations.
The key climate forcings we altered in our simulations were:
We found that no single one of these forcings yielded surface air temperatures and snowfall rates that would allow snow to accumulate on low-latitude continents, as the geologic record indicates. The reduced solar luminosity and 40 ppm carbon dioxide simulations did, however, show that snow and ice accumulations on land in mid-latitudes could have occurred during a snowball Earth interval if either of these conditions actually existed. Combining climate forcings causes further cooling and extends the annual average freeze line, as well as snow and ice accumulations, into the outskirts of the tropics. For example, experiments combining reduced solar luminosity with either 140 ppm atmospheric CO2 or reduced ocean heat transports produced cooling patterns similar to the experiment using just the 40 ppm atmospheric CO2 altered forcing. Ultimately, only the most extreme scenarios in our study yielded tropical conditions that were cold enough to permit significant snow and ice accumulation on the low latitude continents. With atmospheric CO2, solar luminosity and ocean heat transports all reduced together, sea ice never completely covered the tropical oceans. With as much as 30% of the oceans remaining ice-free, the snowball Earth may instead have been more of a slushball. In the last few years other researchers using different climate models have found similar, but not identical, results. In general, though, it appears that the more explicitly the study represents the ocean physics in the model, the more difficult it becomes to freeze over the oceans at lower latitudes. Modeling results suggest, therefore, that during periods of extreme cold, low-latitude continental ice sheets may be easier to produce than a global ocean ice cover — leaving breathing space for life in an almost unimaginably cold time..Español: Resultados de la simulación del modelo climatico GISS GCM que recrea los principales forzantes del clima terrestre durante el Neoproterozoico, a saber: una distribución de las masas continentales basada en la fracturación de Rodinia, una radiación solar un 6% más débil, una concentración de CO2 de 40 ppm y un transporte oceanico reducido. La simulacion se prolongó hasta obtenerse un equilibrio. El modelo muestra como la combinación de todos esos facturos produce un efecto de albedo descontrolado que genera una capa de hielo salvo en los trópicos. |
Date | |
Source | http://www.giss.nasa.gov/research/briefs/sohl_01/ |
Author | Linda Sohl and Mark Chandler |
Licensing
[edit]Public domainPublic domainfalsefalse |
This file is in the public domain in the United States because it was solely created by NASA. NASA copyright policy states that "NASA material is not protected by copyright unless noted". (See Template:PD-USGov, NASA copyright policy page or JPL Image Use Policy.) | ||
Warnings:
|
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:12, 30 July 2009 | 20 s, 512 × 480 (4.79 MB) | Inland (talk | contribs) | {{Information |Description={{en|1=Varanger simulation which combines reduced solar luminosity, 40 ppm CO2, and reduced ocean heat transport. The simulation runs 60 model years from initial, non-snowball conditions until an equilibrium result is obtained.} |
You cannot overwrite this file.
File usage on Commons
The following 2 pages use this file:
Transcode status
Update transcode statusFile usage on other wikis
The following other wikis use this file:
- Usage on af.wikipedia.org
- Usage on en.wikipedia.org
- Usage on es.wikipedia.org
- Usage on es.wikibooks.org
- Usage on eu.wikipedia.org
- Usage on fi.wikibooks.org
- Usage on fr.wikipedia.org
- Terre boule de neige
- Discussion:Terre boule de neige
- Wikipédia:Statistiques des anecdotes de la page d'accueil/Visibilité des anecdotes (2018)
- Discussion:Terre boule de neige/LSV 14914
- Wikipédia:Statistiques des anecdotes de la page d'accueil/Visibilité des anecdotes (2018)/2018 07
- Wikipédia:Le saviez-vous ?/Archives/2018
- Discussion Portail:Paléontologie/Le saviez-vous ?/52
- Usage on hu.wikipedia.org
- Usage on ja.wikipedia.org
- Usage on lt.wikipedia.org
- Usage on sv.wikipedia.org
- Usage on tr.wikipedia.org
- Usage on uk.wikipedia.org
- Usage on www.wikidata.org
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Software used | Xiph.Org libTheora I 20070915 3 2 1 |
---|