File:125-Fold Time-Lapsed Perijove-04 Fly-Over Animation Derived from Raw JunoCam Images, 2017-02-02.webm

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file(WebM audio/video file, VP8/Vorbis, length 51 s, 854 × 334 pixels, 128 kbps overall, file size: 795 KB)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description
English: On February 2, 2017, NASA's Juno spacecraft performed her 4th perijove pass (PJ-04), a close flyby over Jupiter. Juno orbits around Jupiter take about 53.5 days. They are elliptical and very eccentrical. The JunoCam instrument, Juno's public outreach and education camera, was operational during PJ04, and took several images.

The images covered all of Jupiter latitudes. This allows rendering seamless animations from above Jupiter's north pole till above its south pole along Juno's trajectory. The animation shown here is time-lapsed by a factor of 125. Each frame of the animaton is rendered immediately from a respective raw JunoCam image. These raw JunoCam images consist of color strips ("framelets") the camera takes while the Juno spacecraft rotates with a spin rate of about two revolutions per minute. For each frame of the animation, the raw JunoCam framelets are merged to a color image showing Jupiter from a perspective as it has been for the respective simulated trajectory position. The raw JunoCam colors underwent "decompanding" and weighting in order to reconstruct approximately "natural" colors. Since the contrast of Jupiter's cloud top is mostly pretty low, for this animation, I've decided to apply two enhancement steps. First dividing by a Lambert shading model, in order to get the colors relative to a white mate solid spheroid illuminated by the Sun. In contrast to a white mate solid, Jupiter has an atmosphere. This results in a twilight zone beyond the terminator. Therefore, the previously described method of de-Lambertianing results in a brightening effect of the twilight zone. No correction has been applied to this effect. In order to further enhance constrast, I've squared the resulting radiometric quotients. In other words, I've applied a gamma-stetch of 4.0 (applying 4th power) relative to square-root encoded colors. (Raw JunoCam data are roughly square-root encoded.) As a side-effect, this additional gamma-stretch further brightens the terminator region. Future versions might adjust for the over-enhancement of the twilight. The animation is derived from JunoCam's perijove-04 images #099 to #109. The JunoCam images have been taken from different perspective along Juno's trajectory. The same surface point of Jupiter changes appearence with perspective and time. This effect is not adjusted for in the animation. Therefore the changes from one raw JunoCam image to the next is accompanied by a change of Jupiter's appearence. The simulated real time covers 2017-02-02T12:25:00.000 to 2017-02-02T14:10:00.000. For most of the sequence, north is to the left. The projection is spherical with a vertical (latitudinal) field of view (FOV) of 45 degrees, and a horizontal (longitudinal) FOV of 115 degrees. The simulated pointing is constant except three 45 degree-jumps to the left, in order too keep Jupiter in the field of view. In parts of the animation, the respective raw JunoCam image doesn't cover the whole simulated field of view. This results e.g. in a curved upper or lower truncation of Jupiter, or in an unsharp or truncated limb zone. Rendering the stills for the animation took about two days of CPU time.

Besides the raw JunoCam images (credit: NASA / JPL / SwRI / MSSS), the processing uses ffmpeg for graphics and video file conversions, SPICE trajectories dumped with the SPICE/NAIF utility spy.exe, a decompanding table provided by MSSS and accessible via NASA's PDS, preliminary radiometric calibration weights determined by MSSS, and C++ compilers to compile home-made C++ source code into proprietary image processing software.

Credit: NASA / JPL / SwRI / MSSS / Gerald Eichstädt
Date
Source YouTube: 125-Fold Time-Lapsed Perijove-04 Fly-Over Animation Derived from Raw JunoCam Images, 2017-02-02 – View/save archived versions on archive.org and archive.today
Author Gerald Eichstädt

Licensing

[edit]
This video, screenshot or audio excerpt was originally uploaded on YouTube under a CC license.
Their website states: "YouTube allows users to mark their videos with a Creative Commons CC BY license."
To the uploader: You must provide a link (URL) to the original file and the authorship information if available.
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
Attribution: Gerald Eichstädt
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
YouTube logo This file, which was originally posted to YouTube: 125-Fold Time-Lapsed Perijove-04 Fly-Over Animation Derived from Raw JunoCam Images, 2017-02-02, was reviewed on 13 February 2020 by the automatic software YouTubeReviewBot, which confirmed that this video was available there under the stated Creative Commons license on that date. This file should not be deleted if the license has changed in the meantime. The Creative Commons license is irrevocable.

The bot only checks for the license, human review is still required to check if the video is a derivative work, has freedom of panorama related issues and other copyright problems that might be present in the video. Visit licensing for more information. If you are a license reviewer, you can review this file by manually appending |reviewer={{subst:REVISIONUSER}} to this template.

Creative Commons logo

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current05:51, 6 August 201851 s, 854 × 334 (795 KB)Jcpag2010 (talk | contribs)Imported media from https://www.youtube.com/watch?v=xiNJAhWqvHI

The following page uses this file:

Transcode status

Update transcode status
Format Bitrate Download Status Encode time
VP9 480P 106 kbps Completed 05:52, 6 August 2018 28 s
Streaming 480p (VP9) 102 kbps Completed 23:23, 12 December 2023 1.0 s
VP9 360P 58 kbps Completed 05:52, 6 August 2018 21 s
Streaming 360p (VP9) 54 kbps Completed 03:04, 14 December 2023 2.0 s
VP9 240P 36 kbps Completed 05:52, 6 August 2018 16 s
Streaming 240p (VP9) 44 kbps Completed 17:41, 21 November 2023 9.0 s
WebM 360P 320 kbps Completed 05:52, 6 August 2018 16 s
Streaming 144p (MJPEG) 381 kbps Completed 14:45, 27 October 2023 2.0 s
Stereo (Opus) 1 kbps Completed 08:34, 9 November 2023 1.0 s
Stereo (MP3) 128 kbps Completed 11:09, 27 October 2023 1.0 s

Metadata