File:Toroidalplanet.jpg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file(1,080 × 1,080 pixels, file size: 507 KB, MIME type: image/jpeg)

Captions

Captions

Artist's impression of a toroidal planet

Summary

[edit]
Description
English: A toroidal planet is a hypothetical type of telluric exoplanet with a toroidal or doughnut shape. While no firm theoretical understanding as to how toroidal planets could form naturally is necessarily known, the shape itself is potentially quasistable, and is analogous to the physical parameters of a speculatively constructible megastructure in self-suspension, such as a Dyson Ring, ringworld, Stanford torus or Bishop Ring.At sufficiently large enough scales, rigid matter such as the typical silicate-ferrous composition of rocky planets behaves fluidly, and satisfies the condition for evaluating the mechanics of toroidal self-gravitating fluid bodies in context. A rotating mass in the form of a torus allows an effective balance between the gravitational attraction and the force due to centrifugal acceleration, when the angular momentum is adequately large. Ring-shaped masses without a relatively massive central nuclei in equilibrium have been analyzed in the past by Henri Poincaré (1885), Frank W. Dyson (1892), and Sophie Kowalewsky (1885), wherein a condition is allowable for a toroidal rotating mass to be stable with respect to a displacement leading to another toroid. Dyson (1893) investigated other types of distortions and found that the rotating toroidal mass is secularly stable against "fluted" and "twisted" displacements but can become unstable against beaded displacements in which the torus is thicker in some meridians but thinner in some others. In the simple model of parallel sections, beaded instability commences when the aspect ratio of major to minor radius exceeds 3.Wong (1974) found that toroidal fluid bodies are stable against axisymmetric perturbations for which the corresponding Maclaurin sequence is unstable, yet in the case of non-axisymmetric perturbation at any point on the sequence is unstable. Prior to this, Chandrasekhar (1965, 1967), and Bardeen (1971), had shown that a Maclaurin spheroid with an eccentricity≥ 0.98523 is unstable against displacements leading to toroidal shapes and that this Newtonian instability is excited by the effects of general relativity. Eriguchi and Sugimoto (1981) improved on this result, and Ansorg, Kleinwachter&Meinel (2003) achieved near-machine accuracy, which allowed them to study bifurcation sequences in detail and correct erroneous results.Since the existence of toroidal planets is strictly hypothetical, no empirical basis for protoplanetary formation has been established. One homolog is a synestia, a loosely connected doughnut-shaped mass of vaporized rock, proposed by Simon J. Lock and Sarah T. Stewart-Mukhopadhyay to have been responsible for the isotopic similarity in composition, particularly the difference in volatiles, of the Earth-Moon system that occurred during the early-stage process of formation, according to the leading giant-impact hypothesis. The computer modelling incorporated a smoothed particle hydrodynamics code for a series of overlapping constant-density spheroids to obtain the result of a transitional region with a corotating inner region connected to a disk-like outer region.To date, no distinctly torus-shaped planet has ever been observed. Given how improbable their occurrence, it is extremely unlikely any will ever be observationally confirmed to exist even within our cosmological horizon.
Date
Source Own work
Author Pablo Carlos Budassi

Planet concept illustrated especially for Wikimedia Commons by Pablo Carlos Budassi. Source: https://www.pablocarlosbudassi.com/2021/02/planet-types.html Background image by ESO/Serge Brunier: https://commons.wikimedia.org/wiki/File:ESO_-_Milky_Way.jpg Suggestions for improving this image are welcome: pablocarlosbudassi@gmail.com

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:45, 15 August 2023Thumbnail for version as of 17:45, 15 August 20231,080 × 1,080 (507 KB)Celestialobjects (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.

Metadata