File:Sum of two points on an Edwards curve.svg
Original file (SVG file, nominally 540 × 540 pixels, file size: 26 KB)
Captions
Summary
[edit]DescriptionSum of two points on an Edwards curve.svg |
English: The plot presents the geometry meaning of point addition on the Edwards curves .
Here you can see the sum of two points on the curve with . Point has x-coordinate -0.6, point has x-coordinate 0.1. Unlike the traditional elliptic curves where points , and lay on the straight line, in the case of the Edwards curves the points , and lay on a conic . The graph was created using the following script: import matplotlib.pyplot as plt
import numpy as np
import math
from collections import namedtuple
# Utility type
Point = namedtuple('Point', ['x', 'y'])
d = -30
def edwards_y(x):
return np.sqrt((x*x - 1)/(d*x*x - 1))
# Draw Edwards curve
x = np.linspace(-1,1,200)
ypos = edwards_y(x)
yneg = -ypos
plt.figure(figsize=[6, 6])
plt.plot(x,ypos, 'b')
plt.plot(x,yneg, 'b')
# Draw neutral point
plt.scatter(0,1)
plt.annotate("O", (0.01, 1.01))
# Draw order 2 point
plt.scatter(0,-1)
plt.annotate("O'", (0.01, -1.05))
# Draw the points P1 and P2
P1=Point(-0.6, edwards_y(-0.6))
P2=Point(0.1, edwards_y(0.1))
plt.scatter(*P1)
plt.annotate("P1", (P1.x-0.05, P1.y+0.05))
plt.scatter(*P2)
plt.annotate("P2", P2)
# Compute and draw P1 + P2
def edwards_sum(x1,y1,x2,y2):
return ( (x1*y2+x2*y1)/(1+d*x1*x2*y1*y2) , (y1*y2 - x1*x2)/(1-d*x1*x2*y1*y2) )
P3 = Point(*edwards_sum(*P1, *P2))
plt.scatter(*P3)
plt.annotate("P3", (P3.x-0.05, P3.y+0.05))
P3_ = Point(-P3.x, P3.y)
plt.scatter(*P3_)
plt.annotate("-(P1+P2)", (P3_.x+0.01, P3_.y+0.05))
# Draw the line that connects P3 and -P3
plt.axhline(P3.y, linestyle='--', color="grey")
# Draw the conic that P1, P2 and -(P1+P2) belong to
def conic_coefs(x1,y1,x2,y2):
"Computes coeffitiens of the quadratic form Axy + Bx + Cx + D"
return (x1-x2 + (x1*y2-x2*y1),
(x2*y2-x1*y1)+y1*y2*(x2-x1),
x1*x2*(y1-y2),
x1*x2*(y1-y2)
)
def conic_y(x, A,B,C,D):
return -(B*x + D)/(A*x + C)
A,B,C,D = conic_coefs(*P1,*P2)
# Left and right branches of the hyperbole
xleft = np.linspace(-1,0.003,50)
xright = np.linspace(P2[0] - 0.02, 1.1, 50)
yleft = conic_y(xleft, A,B,C,D)
yright = conic_y(xright, A,B,C,D)
plt.plot(xleft, yleft,"--", color="green")
plt.plot(xright, yright,"--", color="green")
# Draw axis lines
plt.axhline(0, color='black')
plt.axvline(0, color='black')
# Set same scale on x and y
plt.gca().set_aspect('equal', adjustable='box')
plt.savefig("Add_points_Edwards.svg")
Русский: График иллюстрирует геометрический смысл сложения точек на кривых Эрдвадса .
На графике изображено сложение двух точек на кривой с параметром . Точка с x-координатой -0.6, точка с x-координатой 0.1. В отличие от традиционных эллиптических кривых, где точки , и лежат на прямой, на кривых Эдвардса точки , и лежат на гиперболе . |
Date | |
Source | Own work |
Author | Pakuula |
Licensing
[edit]- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 04:24, 20 December 2020 | 540 × 540 (26 KB) | Pakuula (talk | contribs) | Uploaded own work with UploadWizard |
You cannot overwrite this file.
File usage on Commons
There are no pages that use this file.
File usage on other wikis
The following other wikis use this file:
- Usage on en.wikipedia.org
- Usage on ru.wikipedia.org
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Width | 432pt |
---|---|
Height | 432pt |