File:Selerika 50 climate diagram.svg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (SVG file, nominally 1,080 × 720 pixels, file size: 48 KB)

Captions

Captions

Selerika climate diagram, 50 years ago

Summary

[edit]
Description
English: Selerika climate diagram, 50 years ago
Date
Source Own work
Author Merikanto
Camera location64° 39′ 59.98″ N, 147° 50′ 00″ E  Heading=1° Kartographer map based on OpenStreetMap.View this and other nearby images on: OpenStreetMapinfo

A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years

==

[edit]

Publication Status:


   Published with DOI - please see catalogue record for full abstract and citation text

CEDA Data Catalogue Page for this dataset:


   http://catalogue.ceda.ac.uk/uuid/de6591c3d5d44b08b4d954410f353c6e

Data Status:


   Dataset is presently being produced - please await formal release

licence:


   Use of these data is covered by the following licence: 
   
   http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
   
   When using these data you must cite them correctly using the citation given on the catalogue record.
  

Access:


  Public data: access to these data is available to both registered and non-registered users.

"Month";"T";"P" 1;-43;11.8 2;-39.8;9.5 3;-32.4;5.9 4;-19.2;8.4 5;-4.4;13.4 6;6.2;43.1 7;9.6;61.7 8;6.7;56.7 9;-1.5;33.5 10;-17.5;14.2 11;-34.6;10.7 12;-42.2;8.8

    1. acquire some hadcm3b 60ka climate data
    2. "R" 4.03
    3. v. 0002.02
    4. 17.10.2021
    5. WARNING: script in alpha stage
  1. install_libs1=1
  1. if(install_libs==1)
  2. {
  3. install.packages("raster")
  4. install.packages("ncdf4")
  5. install.packages("abind")
  6. install.packages("Cairo")
  7. install.packages("svglite")
  8. }

library(raster) library(ncdf4) library(abind) library(svglite)

## hadcm3b 60ka files path
    1. hadbasepath<<-"D:/varasto_iceagesimu"

hadbasepath<<-"./predata"

hadbaseyear=-1 hadprocesspath<-"./data_processing/"

lones1=0 latis1=0


hadcm3_loadslice <- function(temp_name, var_name, hadyear) {

	putin1 <- nc_open(temp_name)
    	  		          

lones1<<- ncvar_get(putin1, "longitude") latis1<<- ncvar_get(putin1, "latitude") t <- ncvar_get(putin1, "time") lenlones1<-length(lones1) lenlatis1<-length(latis1)

deltayears1=hadyear-hadbaseyear deltamonths1=deltayears1*12 item1=30000-deltamonths1-12+1 months1=12

temp_pusu1<-ncvar_get(putin1,var_name, start=c(1,1,item1), count=c(lenlones1,lenlatis1,months1) ) nc_close(putin1)

taimi1=t[1]

return(temp_pusu1)

}


generate_hadfilename<-function(hadbaspath1, yrr1, varr1) {

hadfilenamex1=hadbaspath1

hadfilenamex1<-paste0(hadfilenamex1,"/bias_regrid_") hadfilenamex1<-paste0(hadfilenamex1,varr1) hadfilenamex1<-paste0(hadfilenamex1,"_")

a=as.integer(yrr1/2500) b=a*2500 c=b/1000 d=c+2.5

hadbaseyear<<-b

hadfilenamex1<-paste0(hadfilenamex1,toString(c)) hadfilenamex1<-paste0(hadfilenamex1,"_") hadfilenamex1<-paste0(hadfilenamex1,toString(d)) hadfilenamex1<-paste0(hadfilenamex1,"kyr.nc") return(hadfilenamex1) }

load_had_slices<-function(beginyr1, yrs1, varr1) { endyr1=beginyr1+yrs1-1 print("Loading haccm3 slices, wait ...")

markki1=0 yyyy1=0

for (yrr1 in (beginyr1:endyr1)) { hadfilename=generate_hadfilename(hadbasepath, yrr1, varr1) print(yrr1) print (hadfilename) slice00=hadcm3_loadslice(hadfilename, varr1, yrr1)

if(markki1==0) { baseslice1<-slice00 } else { # add slices baseslice1<-baseslice1+slice00 }


markki1=1 yyyy1=yyyy1+1 }

		#print(head(baseslice1))
		baseslice1=baseslice1/yyyy1
		

return (baseslice1) }

draw_climate_diagram<-function(lampot, sadem) {

#mydata <- read.csv("kiova2.txt", header=FALSE, sep=";") labeli='Paris, 40750 BP' nimi="paris_40750bp" datanimi=paste(nimi,".txt"); kuvanimi=paste(nimi,".svg");

prmax=100 prmin=0 tmax = 20.0 tmin=-25.0 tstep=5

widthi=10 heighti=16

asteikko<-c(" "," ","3"," "," ","6"," ", " ","9"," "," ","12" )

svg(kuvanimi, width=widthi, height=heighti)

deltapr=prmax-prmin deltatee<-(tmax-tmin)

ratio<-deltapr/deltatee

y2offset= -1*ratio*tmin

total_sadem=sum(sadem) avg_lampotila=sum(lampot)/12 avg_lampotila=(round(avg_lampotila)*10)/10

max_lampotila=max(lampot) min_lampotila=min(lampot)

par(mar=c(6,6,6,6),cex.axis=2,cex.lab=2.5)

b<-barplot(sadem, names.arg=asteikko, col="blue", border="blue",ylim=c(prmin, prmax), cex.axis=2.5, cex.names=2.5 )

lines(b, (lampot*ratio)+y2offset, col="Red",lwd=8)

right.axis.ticks<- seq(from =tmin , to=tmax , by=tstep)

axis(4,at=(right.axis.ticks*ratio)+y2offset,labels=paste0(right.axis.ticks),las=2, cex.axis=2.5)

mtext(side = 2, line = 3, 'Precipitation', cex=2.5, col="darkblue") mtext(side = 4, line = 3, 'Temperature', cex=2.5, col="darkred") mtext(side = 1, line = 3, 'Month', cex=2.5, col="darkgreen")

text(7,(prmax-2),cex=3.5, labeli); text(1,(prmax-8),cex=2.4, pos=4, paste("Tavg=",avg_lampotila, " C" )); text(1,(prmax-12),cex=2.4, pos=4, paste("Tamax=",max_lampotila, " C" )); text(1,(prmax-16),cex=2.4, pos=4,paste("Tamin=",min_lampotila, " C" )); text(1,(prmax-20),cex=2.4, pos=4,paste("Pra=",total_sadem, " mm" ));


}

get_had_climate_data<-function(beginyears, years, targetname1, lat1, lon1) { print("Loading data, wait ...") varr1="tas" varr2="pr" tempsit1<-load_had_trapezoid(beginyears, years, varr1, lon1, lat1) precsit1<-load_had_trapezoid(beginyears, years, varr2, lon1, lat1)

#print (tempsit1) #print (precsit1)

months1<-1:12

tempsit1<-round(tempsit1, digits = 1) precsit1<-round(precsit1, digits = 1)

tavg1<-sum(tempsit1)/12.0 pannual1<-sum(precsit1)


df1<-data.frame(months1, tempsit1,precsit1)

names(df1)<-c("Month", "T", "P")

coutname1=paste0(targetname1, ".csv")

#write.csv2(df1,coutname1)

#write.table(df1,file=coutname1,sep=";")

   write.table(df1,file=coutname1,sep=";",row.names=FALSE)

print("Monthly data:") print(df1)

print ("Climate averages:") print (tavg1) print (pannual1)

draw_climate_diagram(tempsit1, precsit1)

}

had_twoslicer<-function(beyr1,yrs1,varr1) {

enyr1=beyr1+yrs1


print(beyr1) print(enyr1)

hadbasepath1<<-hadbasepath

hadnames1<-vector(mode="character", length=2)

hadbaseyears<-rep(0,2) #print (hadbaseyears)

hadnames1[1]<-generate_hadfilename(hadbasepath1, beyr1, varr1) hadbaseyears[1]<-hadbaseyear hadnames1[2]<-generate_hadfilename(hadbasepath1, enyr1, varr1) hadbaseyears[2]<-hadbaseyear

deltayears1=(beyr1-hadbaseyears[2])*-1 deltamonths1=deltayears1*12 item1=30000-deltamonths1-12+1 months1=12

deltayears2=enyr1-hadbaseyears[2] deltamonths2=deltayears2*12 item2=30000-deltamonths2-12+1 months2=12

  1. print (hadnames1[1])
  2. print (hadnames1[2])
  3. print(deltayears1)
  4. print(deltamonths1)
  5. print(deltayears2)
  6. print(deltamonths2)

twoo1=0


if(hadbaseyears[1]==hadbaseyears[2]) {

  1. print("Twoo 1")

twoo1=1 }


if(deltayears1>-1) { twoo1=1 }

if(twoo1==0) {

putin1 <- nc_open(hadnames1[1])

lones1<<- ncvar_get(putin1, "longitude") latis1<<- ncvar_get(putin1, "latitude") t <- ncvar_get(putin1, "time") lenlones1<-length(lones1) lenlatis1<-length(latis1)


temp_pusu1<-ncvar_get(putin1,varr1, start=c(1,1,item1), count=c(lenlones1,lenlatis1,deltamonths1) ) nc_close(putin1)


  1. print("put in 2")

putin2 <- nc_open(hadnames1[2])

lones1<<- ncvar_get(putin2, "longitude") latis1<<- ncvar_get(putin2, "latitude") t2 <- ncvar_get(putin2, "time") lenlones1<-length(lones1) lenlatis1<-length(latis1)

temp_pusu2<-ncvar_get(putin2,varr1, start=c(1,1,item2), count=c(lenlones1,lenlatis1,deltamonths2) ) nc_close(putin2)

# print("put in 2")

dima1=dim(temp_pusu2)


pusu3=abind(temp_pusu1,temp_pusu2,along=3)

} #two file buffers else { # print("Twoo 1 ...")

deltayears2=beyr1-hadbaseyears[1] deltamonths2=deltayears2*12 item2=30000-deltamonths2-12+1 months2=(enyr1-beyr1)*12


#print(deltayears2) #print(deltamonths2) #print(item2)

#print("put in 2") putin2 <- nc_open(hadnames1[2])

lones1<<- ncvar_get(putin2, "longitude") latis1<<- ncvar_get(putin2, "latitude") t2 <- ncvar_get(putin2, "time") lenlones1<-length(lones1) lenlatis1<-length(latis1)

pusu3<-ncvar_get(putin2,varr1, start=c(1,1,item2), count=c(lenlones1,lenlatis1,months2) ) nc_close(putin2)


}

dima3=dim(pusu3)

#print(dima1) #print(dima3)


as1<- array(rep(0, 720*180*12), dim=c(720, 180, 12))

ylimit1=dima3[3]


#print (dim(as1))

hhh1=0

maxima1<-(ylimit1/12)-1

print (maxima1) for( m in 1:maxima1) { for( n in 1:12) {

has1<-pusu3[,,m*12+n]

as1[,,n]<-as1[,,n]+pusu3[,,m*12+n]

} hhh1=hhh1+1 }

as1<-as1/hhh1

return(as1) }

load_had_trapezoid<-function(beginyr1, yrs1, varr1, lon1, lat1) {

  1. slice00=load_had_slices(beginyr1, yrs1, varr1)

slice00<-had_twoslicer(beginyr1,yrs1,varr1)

dima1=dim(slice00)

#print (dima1)

max1=dima1[1] may1=dima1[2]

   londex2=which(lones1 >= lon1 )[1]
   latdex2=which(latis1 >= lat1 )[1]
  
  
   londex1=londex2-1
   latdex1=latdex2-1
  
   if(londex1<1) londex1=max1	
   if(latdex1<1) latdex1=may1
     	
   abslon1=lones1[londex1]
   abslat1=latis1[latdex1]	
   abslon2=lones1[londex2]
   abslat2=latis1[latdex2]	

#print("lons") #print(abslon1)

   #print(abslon2)
   #print(abslat1)
   #print(abslat2)
   
   #print (max1)
   #print (may1)
   #print (lones1[0])	

vektor1<-1:12 vektor1<-vektor1*0

   n=7
  	for (n in 1:12)

{ ## attempt to process trapezoid

value1=slice00[londex1,latdex1, n] value2=slice00[londex1,latdex2, n] value3=slice00[londex2,latdex1, n] value4=slice00[londex2,latdex2, n]

rulon1=abslon2-abslon1 rulat1=abslat2-abslat1

daata1<-c(value1,value2,value3,value4)


matrix <- matrix(daata1, nrow=2, ncol=2) r <- raster(matrix) ## lon lat extent(r) <- c(abslon1, abslon2, abslat1,abslat2)

## reso 100x100 s <- raster(nrow=100, ncol=100)

extent(s)<-extent(r) s <- resample(r, s, method='bilinear')

xy <- cbind(lon1,lat1)

resultt1<-extract(r, xy)


vektor1[n]=resultt1 }

return(vektor1)

}

load_had_raster<-function(beginyr1, yrs1, varr1, month1) { #slaici1=load_had_slices(beginyear1, yrs1, varr1) slaici1<-had_twoslicer(beginyr1,yrs1,varr1)

dima1=dim(slaici1)

print (dima1)

if(month1==0) { markki=0 yyyy1=0

## select all months for (n in 1:12) { vaari0=slaici1[,,month1] if(markki1==0) { baseslice1<-slice00 } else { # add slices baseslice1<-baseslice1+slice00 }

merkki=1 yyyy1=yyyy1+1 }

vaari0=baseslice1/yyyy1 } else { vaari0=slaici1[,,month1] }

print (dim(vaari0))


padding1 = matrix(0,720,180)

   vaari1<-cbind(padding1,vaari0)  

vaari1<- apply(t(vaari1),2,rev)

rrvar1<-raster (vaari1)

rrvar1@extent<-extent(0, 360, -90, 90)

crs(rrvar1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

   rvarfilename1=paste0(hadprocesspath, "global_360_",varr1,"_",month1,"-nc")
   longname1=paste0(varr1," ",toString(beginyr1) )

writeRaster(rrvar1, rvarfilename1, overwrite=TRUE, format="CDF", varname=varr1, varunit="unit", longname=longname1, xname="lon", yname="lat")

}

load_had_rasters_var<-function(beginyr1, yrs1, varr1) { yrmid1=beginyr1+(yrs1/2)

slaici1<-had_twoslicer(beginyr1,yrs1,varr1)

dima1=dim(slaici1)

print (dima1)


for (n in 1:12) { print (n) vaari0=slaici1[,,n]

padding1 = matrix(0,720,180)

vaari1<-cbind(padding1,vaari0)

vaari1<- apply(t(vaari1),2,rev)

rrvar1<-raster (vaari1)

rrvar1@extent<-extent(0, 360, -90, 90)

crs(rrvar1) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

if(n==1) { rs1=stack(rrvar1) } else { rs1=stack(rs1, rrvar1) }

}

 plot(rs1)
   rvarfilename1=paste0(hadprocesspath, "global_360_",varr1,"_",yrmid1)
   longname1=paste0(varr1," ",toString(yrmid1) )

writeRaster(rs1, rvarfilename1, overwrite=TRUE, format="CDF", varname=varr1, varunit="unit", longname=longname1, xname="lon", yname="lat")

}

load_climate<-function() {

  1. beginyear1=36000
    1. beginyear1=40200

beginyear1=40750

years1=100

month1=7

varr1="tas" varr2="pr"

    1. paris
  1. beginyear1=40750

targetname1="paris" targetlat1=48.856667 targetlon1=2.351111

    1. selerika 64.66666,147.833333
    2. selerika 64° 40' N, 147° 45' E
  1. targetname1="selerika"
  2. targetlat1=64.666667
  3. targetlon1=147.833333
  1. targetname1="zyryanka"
  2. targetlat1=65.75
  3. targetlon1=150.9
  1. targetname1="seymchan"
  2. targetlat1=62.930833
  3. targetlon1=152.385
  1. targetname1="sungir"
  2. targetlat1=56.175833
  3. targetlon1=40.509167
  1. targetlon1=0.0

print("-----------------------------") print("Age:") hage1<-beginyear1+(years1/2) print(hage1) print("Target:") print(targetname1) print (targetlon1) print (targetlat1) print ("")

get_had_climate_data(beginyear1, years1,targetname1,targetlat1, targetlon1)

placename1=targetname1 yearr1=as.character(beginyear1)

sj1=paste0("python hadiag1.py ",placename1," ",yearr1)

print(sj1)

system(sj1)

}

raster_experiment_1<-function() { beginyear1=40650 years1=100 month1=7 varr1="tas" varr2="pr"

load_had_rasters_var(beginyear1, years1, varr1) load_had_rasters_var(beginyear1, years1, varr2) }

load_python_draw_climate<-function(beginyear1, targetname1, targetlon1, targetlat1) {

years1=33 ## num of yrs to average

  1. month1=7

varr1="tas" varr2="pr"

print("-----------------------------") print("Age:") hage1<-beginyear1+(years1/2) print(hage1) print("Target:") print(targetname1) print (targetlon1) print (targetlat1) print ("")

get_had_climate_data(beginyear1, years1,targetname1,targetlat1, targetlon1)

placename1=targetname1 yearr1=as.character(beginyear1)

sj1=paste0("python hadiag1.py ",placename1," ",yearr1)

print(sj1)

system(sj1)

}

    1. Main proggis

print("HadCM3B 60ka simulation climate data.")

beginyear1=40750 targetname1="paris" targetlat1=48.856667 targetlon1=2.351111

beginyear1=50 targetname1="selerika" targetlat1=64.66666 targetlon1=147.833333

load_python_draw_climate(beginyear1, targetname1, targetlon1, targetlat1)

print("Program run done.")

    1. raster_experiment_1()
  1. load_climate()

    1. drawing climate diagram in python 3
    2. from input csv file
    3. version 2.1101
    4. 17.10.2021

import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy import interpolate import sys

print ('Argument List:', str(sys.argv))

pohjanimi=sys.argv[1] ika=sys.argv[2] isonimi=pohjanimi.capitalize()

print(pohjanimi, isonimi, ika)

  1. quit(-1)
  1. pohjanimi="paris"
  2. ika="40750"

captioni=isonimi+", "+ika+" BP" maxrainfall=120 mintemperature=-40 maxtemperature=20

datafilename=pohjanimi+".csv" savename=pohjanimi+"_"+ika+"_climate_diagram.svg"

figsizex=12 figsizey=8

x0 = [] y0 = [] y20= []

x = [] y = [] y2= []

dfin0=pd.read_csv(datafilename, sep=";") lst1 = ['Month','T','P']

dfin1 = dfin0[dfin0.columns.intersection(lst1)]

x0=dfin1['Month'] y0=dfin1['T'] y20=dfin1['P']

x.append(0) y.append(y0[11]) y2.append(y0[11])

for n in range(0, 12): x.append(x0[n]) y.append(y0[n]) y2.append(y20[n])

x.append(13) y.append(y0[0]) y2.append(y0[0])

print(x)

  1. print(y)
  2. print (type(x))
  3. print (type(y))
  1. quit(0)

yearprecip=0 yeartemp=0

for n in range(1, 13): yearprecip=yearprecip+y2[n] yeartemp=yeartemp+y[n] print (n,y[n],y2[n])


size1=22 size2=26 size3=30

yeartemp=round((yeartemp/12.0),1) mintemp=min(y) maxtemp=max(y) yearprecip=round(yearprecip,0) maxprecip=max(y2) minprecip=min(y2)

print(yearprecip) print(minprecip) print(maxprecip)

print(yeartemp) print(mintemp) print(maxtemp)

ymax1=int((maxprecip+60)/20)*20 ymax2=int((maxtemp+15)/5)*5 ymin2=int((mintemp-10)/5)*5

x_sm = np.array(x) y_sm = np.array(y) x_smooth = np.linspace(x_sm.min(), x_sm.max(), 200) funk1 = interpolate.interp1d(x_sm, y_sm, kind="quadratic") y_smooth = funk1(x_smooth)

fig, ax1 = plt.subplots()

  1. plt.rcParams["figure.figsize"] = (12,16)

ax1.axis((1,12,0,ymax1))

ax1.bar(x, y2, color='#0000ff', label="Precip. mm", width=0.9, align="center")

ax1.set_ylabel('Precipitation mm', color='#00007f', fontsize=size2)

for tl in ax1.get_yticklabels():

tl.set_color('b')
tl.set_fontsize(size1)

ax2 = ax1.twinx() ax2.set_ylabel('Temperature °C', color='#7f0000', fontsize=size2)

ax2.axis((1,12,ymin2, ymax2))

  1. ax2.plot(x,y, label='Temperature °C',color="#ff0000", linewidth=7)

ax2.plot(x_smooth,y_smooth, label='Temperature °C',color="red", linewidth=10)

for t2 in ax2.get_yticklabels():

t2.set_color('r')
t2.set_fontsize(size1)

ax1.set_xlabel('Month', color="darkgreen", fontsize=size2)

for tix in ax1.get_xticklabels():

tix.set_color("Black")
tix.set_fontsize(size1)

ax1.set_title(captioni, fontsize=size3)

ax2.text(1, ymax2-4, " P annual "+str(int(yearprecip))+ " mm", color="#00007f", fontsize=size1) ax2.text(1, ymax2-8, " T year "+str(yeartemp) + " °C", color="#7f0000",fontsize=size1) ax2.text(1, ymax2-12, " T max "+str(maxtemp)+ " °C", color="#7f0000", fontsize=size1) ax2.text(1, ymax2-16, " T min "+str(mintemp) + " °C", color="#7f0000",fontsize=size1)

fig = plt.gcf() fig.set_size_inches(figsizex, figsizey, forward=True)

plt.plot()

plt.savefig(savename, format="svg", dpi = 100)

plt.show()

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current09:09, 17 October 2021Thumbnail for version as of 09:09, 17 October 20211,080 × 720 (48 KB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

The following page uses this file:

Metadata