File:Permian triassic boundary 251ma co2 3500ppmv ptopet percent 1.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,040 × 720 pixels, file size: 561 KB, MIME type: image/png)

Captions

Captions

Permian triassic boundary 251ma co2 3500ppmv ptopet percent

Summary

[edit]
Description
English: Permian triassic boundary 251ma co2 3500ppmv ptopet percent
Date
Source Own work
Author Merikanto

This image is based on Exoplasim and estimations of CO2 amount in Permian-Triassic boundary, that is often 1600-9000 ppm. Base co3 ca. 350-450 ppmv.

This image is based data from exoplasim simulation and Scotese paleodem maps.

https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/

PaleoDEM Resource – Scotese and Wright (2018) 11 August, 2018 by Sabin Zahirovic

https://www.earthbyte.org/webdav/ftp/Data_Collections/Scotese_Wright_2018_PaleoDEM/Scotese_Wright_2018_Maps_1-88_1degX1deg_PaleoDEMS_nc.zip

PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic

Scotese, Christopher R, & Wright, Nicky M. (2018). PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5460860

Scotese, Christopher R; Wright, Nicky M https://zenodo.org/record/5460860

https://zenodo.org/record/5460860/files/Scotese_Wright_2018_Maps_1-88_6minX6min_PaleoDEMS_nc.zip?download=1

Exoplasim output is Post-Processed with paleodem data.

Exoplasim is ran with Anaconda in Linux.

Note use older version of exoplaism, if exoplasim does not run correctly.

https://github.com/alphaparrot/ExoPlaSim https://pypi.org/project/exoplasim/ https://exoplasim.readthedocs.io/en/latest/

Additional information to produce data for this image is in page

https://commons.wikimedia.org/wiki/File:Permian_triassic_boundary_growing_degree_days_above_5_degrees_celsius_1.png

Base simulation is this

Python exoplasim code

    1. Exoplasim planet running code, python3, ubuntu
  1. attempt to create exoplasim restart code
    1. you can continue running
    2. based on previous run.
    1. 22.11.2023 0000.0007a
    1. convert to T21, input netcdf
    2. load one lon, lat, z grid
    3. or Tarasov glac1d grid
    1. MPI NOTE: if you use more than
    1. one processor, you cannot in most cases run MPI in root
    2. you can use even number of process in mpi: 2, 4, 6 ..
    1. in ubuntu you must install
    1. pip3 install exoplasim[netCDF4]
    2. not
    3. "sudo pip3 install exoplasim[netCDF4]"

import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp2d import netCDF4

import exoplasim as exo

NLAT=0 NLON=0


def writeSRA(name,kcode,field,NLAT,NLON):

   label=name+'_surf_%04d.sra'%kcode
   header=[kcode,0,20170927,0,NLON,NLAT,0,0]
   fmap = field.reshape((int(NLAT*NLON/8),8))
   sheader = 
   for h in header:
       sheader+=" %11d"%h
   
   lines=[]
   i=0
   while i<NLAT*NLON/8:
       l=
       for n in fmap[i,:]:
           l+=' %9.3f'%n
       lines.append(l)
       i+=1
   text=sheader+'\n'+'\n'.join(lines)+'\n' 
   f=open(label,'w')
   f.write(text)
   f.close()
   print (label)

def writeSRA2(label,kcode,field,NLAT,NLON):

   #label=name+'_surf_%04d.sra'%kcode
   header=[kcode,0,20170927,0,NLON,NLAT,0,0]
   fmap = field.reshape((int(NLAT*NLON/8),8))
   sheader = 
   for h in header:
       sheader+=" %11d"%h
   
   lines=[]
   i=0
   while i<NLAT*NLON/8:
       l=
       for n in fmap[i,:]:
           l+=' %9.3f'%n
       lines.append(l)
       i+=1
   text=sheader+'\n'+'\n'.join(lines)+'\n' 
   f=open(label,'w')
   f.write(text)
   f.close()
   print (label)

def savenetcdf_single_frommem(outfilename1, outvarname1, xoutvalue1,xoutlats1,xoutlons1): nlat1=len(xoutlats1) nlon1=len(xoutlons1) #indata_set1=indata1 print(outfilename1) ncout1 = netCDF4.Dataset(outfilename1, 'w', format='NETCDF4') outlat1 = ncout1.createDimension('lat', nlat1) outlon1 = ncout1.createDimension('lon', nlon1) outlats1 = ncout1.createVariable('lat', 'f4', ('lat',)) outlons1 = ncout1.createVariable('lon', 'f4', ('lon',)) outvalue1 = ncout1.createVariable(outvarname1, 'f4', ('lat', 'lon',)) outvalue1.units = 'Unknown' outlats1[:] = xoutlats1 outlons1[:] = xoutlons1 outvalue1[:, :] =xoutvalue1[:] ncout1.close() return 0

def loadnetcdf_single_tomem(infilename1, invarname1): global cache_lons1 global cache_lats1 print(infilename1) inc1 = netCDF4.Dataset(infilename1) inlatname1="lat" inlonname1="lon" inlats1=inc1[inlatname1][:] inlons1=inc1[inlonname1][:] cache_lons1=inlons1 cache_lats1=inlats1 indata1_set1 = inc1[invarname1][:] dim1=indata1_set1.shape nlat1=dim1[0] nlon1=dim1[1] inc1.close() return (indata1_set1)

def create_sras(topo):

global NLAT global NLON

topo2=np.copy(topo) masko=np.copy(topo) topo2[topo2 < 1] = 0 masko[masko < 1] = 0 masko[masko > 0] = 1 grid=np.flipud(masko) name="Example" writeSRA(name,129,topo,NLAT,NLON) writeSRA(name,172,grid,NLAT,NLON) writeSRA2("topo.sra",129,topo2,NLAT,NLON) writeSRA2("landmask.sra",172,grid,NLAT,NLON) return(0)

def convert_to_t21(infilename1, outfilename1):

global NLAT global NLON

indimx=361 indimy=181 #indimx=360 #indimy=360

## t21 64x32 shapex=64 shapey=32 NLAT=shapex NLON=shapey nc = netCDF4.Dataset(infilename1)

inlats=nc['lat'][:] inlons=nc['lon'][:] #print(inlats) #print(inlons) latlen=len(inlats) lonlen=len(inlons)


#print(lonlen, latlen)

indimx=lonlen indimy=latlen

dem=nc['z'] #dem=np.flipud(dem000) dem2=np.copy(dem) #dem2[dem2 < 0] = 0 #plt.imshow(dem,cmap='gist_earth') #plt.imshow(dem2,cmap='gist_earth') #plt.show() #quit(0) lts=[85.7606, 80.2688, 74.7445, 69.2130, 63.6786, 58.1430, 52.6065, 47.0696, 41.5325,35.9951, 30.4576, 24.9199, 19.3822, 13.8445, 8.3067, 2.7689, -2.7689, -8.3067, -13.8445, -19.3822, -24.9199, -30.4576, -35.9951, -41.5325, -47.0696, -52.6065, -58.1430, -63.6786, -69.2130, -74.7445, -80.2688, -85.7606]

## lns=[0, 5.6250, 11.2500, 16.8750, 22.5000, 28.1250, 33.7500 ,39.3750, 45.0000, 50.6250, 56.2500, 61.8750, 67.5000, 73.1250, 78.7500, 84.3750, 90.0000, 95.6250, 101.2500, 106.8750, 112.5000, 118.1250, 123.7500, 129.3750, 135.0000, 140.6250, 146.2500, 151.8750, 157.5000, 163.1250, 168.7500, 174.3750, 180.0000, 185.6250, 191.2500, 196.8750, 202.5000, 208.1250, 213.7500, 219.3750, 225.0000, 230.6250, 236.2500, 241.8750, 247.5000, 253.1250, 258.7500, 264.3750, 270.0000, 275.6250, 281.2500, 286.8750, 292.5000, 298.1250, 303.7500, 309.3750, 315.0000, 320.6250, 326.2500, 331.8750, 337.5000, 343.1250, 348.7500, 354.3750]


ly2=len(lts) lx2=len(lns) shapex=lx2 shapey=ly2

#print("sheip") #print(shapex, shapey)


lons, lats = np.meshgrid(lns,lts) #print (lts) #print (lns) new_W, new_H = (shapey,shapex) xrange = lambda x: np.linspace(0, 360, x) f2 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") #f2 = interp2d(range(indimx), range(indimy), dem2, kind="cubic") demo = f2(xrange(shapex), xrange(shapey)) #plt.imshow(demo) #plt.show() #quit(0) f3 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") #masko = f3(xrange(shapex), xrange(shapey)) #topo=np.flipud(demo) topo=np.copy(demo)

#grid=np.fliplr(masko) #def savenetcdf_single_frommem(outfilename1, outvarname1, xoutvalue1,xoutlats1,xoutlons1): savenetcdf_single_frommem(outfilename1, "z", topo,lts,lns)

return(topo,lons,lats)

def load_glac1d_dem(indatafile, outdatafile, a_yr): # load dem from Tarsaov GLAC1d anno domini 2021 global NLAT global NLON yr=a_yr

lok=int(abs(yr/100-260))

# tarasov ice 26k nc = netCDF4.Dataset(indatafile1)

#print(nc) eisbase=nc['ICEM'] inlats=nc['YLATGLOBP5'][:] inlons=nc['XLONGLOB1'][:]

dem=nc['HDCB'][lok] #dem=np.flipud(dem000) #print (dem) #print (np.shape(dem)) #plt.imshow(dem,cmap='gist_earth')


savenetcdf_single_frommem(outdatafile, "z",dem,inlats,inlons) return(0)


    1. maybe nok

def convert_to_t42(infilename1, outfilename1): ## ONLY attempi! to create T42! global NLAT global NLON

indimx=361 indimy=181


## t42 64x32

#shapex=64 #shapey=32

shapex=128 shapey=64 #shapey=63


NLAT=shapex NLON=shapey nc = netCDF4.Dataset(infilename1)

inlats=nc['lat'][:] inlons=nc['lon'][:]

latlen=len(inlats) lonlen=len(inlons)

indimx=lonlen indimy=latlen

dem=nc['z']

#dem=np.flipud(dem000) dem2=np.copy(dem)

## test t21


tdx=360.0/shapex #tdy=180.0/shapey

tdy=(90.0-85.706)/2

minix=0.0 maksix=360-tdx maksiy=90-tdy miniy=-90+tdy


#print(90-tdy) #

#print(miniy) #print(maksiy)

#quit(-1)

#lns=np.linspace(minix, maksix, num=shapex) #lts=np.linspace(maksiy, miniy, num=shapey) ## jn WARNING 90!

lts=[87.8638, 85.0965 ,82.3129, 79.5256, 76.7369 ,73.9475 ,71.1578, 68.3678, #ok 65.5776, 62.7874, 59.9970 ,57.2066, 54.4162, 51.6257, 48.8352, 46.0447, 43.2542, 40.4636, 37.6731 ,34.8825, 32.0919, 29.3014, 26.5108, 23.7202, 20.9296, 18.1390, 15.3484 ,12.5578, 9.7671, 6.9765, 4.1859, 1.3953, -1.3953, -4.1859, -6.9765, -9.7671, -12.5578, -15.3484, -18.1390, -20.9296, -23.7202,-26.5108, -29.3014 ,-32.0919, -34.8825, -37.6731, -40.4636,-43.2542, -46.0447,-48.8352, -51.6257, -54.4162, -57.2066, -59.9970, -62.7874, -65.5776, -68.3678,-71.1578 ,-73.9475, -76.7369 ,-79.5256, -82.3129, -85.0965, -87.8638]

lns=[0.0000 ,2.8125, 5.6250, 8.4375, 11.2500, 14.0625 ,16.8750 ,19.6875, 22.5000,25.3125, 28.1250, 30.9375 ,33.7500,36.5625 ,39.3750, 42.1875, 45.0000,47.8125, 50.6250, 53.4375, 56.2500, 59.0625 ,61.8750, 64.6875, 67.5000, 70.3125, 73.1250, 75.9375, 78.7500, 81.5625, 84.3750, 87.1875, 90.0000, 92.8125, 95.6250 ,98.4375 ,101.2500, 104.0625, 106.8750, 109.6875, 112.5000, 115.3125, 118.1250, 120.9375,123.7500 ,126.5625 ,129.3750, 132.1875, 135.0000, 137.8125, 140.6250 ,143.4375, 146.2500 ,149.0625, 151.8750 ,154.6875, 157.5000, 160.3125, 163.1250, 165.9375, 168.7500, 171.5625 ,174.3750, 177.1875, 180.0000, 182.8125, 185.6250 ,188.4375, 191.2500, 194.0625, 196.8750, 199.6875, 202.5000, 205.3125, 208.1250, 210.9375, 213.7500 ,216.5625, 219.3750 ,222.1875, 225.0000, 227.8125, 230.6250 ,233.4375, 236.2500, 239.0625, 241.8750, 244.6875, 247.5000, 250.3125, 253.1250, 255.9375, 258.7500, 261.5625, 264.3750, 267.1875, 270.0000, 272.8125, 275.6250, 278.4375, 281.2500 ,284.0625 ,286.8750, 289.6875, 292.5000, 295.3125, 298.1250, 300.9375, 303.7500 ,306.5625, 309.3750, 312.1875, 315.0000, 317.8125, 320.6250, 323.4375, 326.2500, 329.0625 ,331.8750, 334.6875, 337.5000, 340.3125, 343.1250, 345.9375, 348.7500, 351.5625 ,354.3750 ,357.1875]


#lns=

#print (lts) #print (lns)

#print (len(lns),len(lts)) #quit(-1)

ly2=len(lts) lx2=len(lns) shapex=lx2 shapey=ly2

#print("sheip") #print(shapex, shapey)


lons, lats = np.meshgrid(lns,lts)

new_W, new_H = (shapey,shapex) xrange = lambda x: np.linspace(0, 360, x) f2 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") demo = f2(xrange(shapex), xrange(shapey)) f3 = interp2d(xrange(indimx), xrange(indimy), dem2, kind="linear") topo=demo

savenetcdf_single_frommem(outfilename1, "z", topo,lts,lns)

return(topo,lons,lats)

    1. exoplasim ,,,

def exo_runner_restarting2(firstrun,a_input_dem1, a_gridtype, a_layers, a_years,a_timestep,a_snapshots,a_ncpus,a_solarconstant1,a_eccentricity,a_obliquity,a_lonvernaleq,a_pCO2): startemp1=5772 radius1=1.0 gravity1=9.80665 pressure1=1 rotationperiod1=1 output_format=".nc" a_pO2=(1-a_pCO2-0.79)*pressure1 a_pN2=(1-0.21-a_pCO2)*pressure1 evolveco21=False outgassing1=False co2weathering1=False aerosol1=False print("Process input grid, to type ",a_gridtype) if(a_gridtype=="T21"): print("T21") topo, lons, lats=convert_to_t21(a_input_dem1,"demT21.nc")

if(a_gridtype=="T42"): print("T42") topo, lons, lats=convert_to_t42(a_input_dem1, "demT42.nc")

create_sras(topo) print("Creating exoplasim object ") testplanet= exo.Model(workdir="planet_run",modelname="PLANET",ncpus=a_ncpus,resolution=a_gridtype,layers=a_layers, outputtype=output_format,crashtolerant=True)

glaciers1= {"toggle": True,"mindepth":2,"initialh":-1} fluxi1=a_solarconstant1 testplanet.configure( startemp=startemp1, flux=fluxi1,# Stellar parameters eccentricity=a_eccentricity, obliquity=a_obliquity, lonvernaleq=a_lonvernaleq, fixedorbit=True, # Orbital parameters rotationperiod=rotationperiod1, # Rotation #aquaplanet=False,desertplanet=False, topomap="topo.sra", landmap="landmask.sra", radius=radius1, gravity=gravity1, #synchronous=False, #substellerlon=180, stormclim=False, vegetation=2,#toggles vegetation module; 1 for static vegetation, 2 to allow growth vegaccel=1, seaice=True, maxsnow=-1, glaciers=glaciers1, #evolveco2=evolveco21, outgassing=outgassing1, co2weathering=co2weathering1,

   #aerosol=aerosol1,

pN2=a_pN2, pCO2=a_pCO2, pO2=a_pO2, ozone=True, # Atmosphere timestep=a_timestep, snapshots=0, ## jos a_snapshots, vie muistia! wetsoil=True, physicsfilter="gp|exp|sp", restartfile="ressus" ) # Model dynamics

testplanet.exportcfg() runc1=1 n=0 if(firstrun==1): print("Creating first restart.") print("Running ExoPlasim ... ") testplanet.run(years=1,crashifbroken=True) lon = testplanet.inspect("lon") lat = testplanet.inspect("lat") ts =testplanet.inspect("tsa",tavg=True) tsavg=np.mean(ts)-273.15 print("Year: ",n," tsa: ",tsavg) savename = 'ressu' testplanet.finalize(savename,allyears=False,clean=False,keeprestarts=True) testplanet.save(savename) looplen=a_years1 peen=0 runc1=1

for n in range(0,looplen): print("Loop year ",n) testplanet.modify(flux=fluxi1) #number of output times (months) in the output files testplanet.exportcfg() runc1=1 testplanet.run(years=1,crashifbroken=True) lon = testplanet.inspect("lon") lat = testplanet.inspect("lat") ts =testplanet.inspect("tsa",tavg=True) tsavg=np.mean(ts)-273.15 print("Year: ",n," tsa: ",tsavg) savename = 'ressu'+str(runc1)

testplanet.finalize(savename,allyears=False,clean=False,keeprestarts=True) testplanet.save(savename) print("Return.") return(0)

print(" Exoplasim simulation restart code ---")

    1. jn warning maybe nok
  1. input_dem='./indata/indem.nc'
  2. input_dem='./indata/Map22_PALEOMAP_1deg_Mid-Cretaceous_95Ma.nc'
  3. input_dem='./indata/Map14_PALEOMAP_1deg_Paleocene_Eocene_Boundary_55Ma.nc'
  4. input_dem='/indata/Map13_PALEOMAP_1deg_Early_Eocene_50Ma.nc'
  5. input_dem='./indata/Map12_PALEOMAP_1deg_early_Middle_Eocene_45Ma.nc'
  6. input_dem='./indata/Map18_PALEOMAP_1deg_Late_Cretaceous_75Ma.nc' ## OK
  7. input_dem='./indata/Map20_PALEOMAP_1deg_Late_Cretaceous_85Ma.nc' ## nok
  8. input_dem='./indata/Map24_PALEOMAP_1deg_Early Cretaceous_105Ma.nc' ## nok
  9. input_dem='./indata/Map17_PALEOMAP_1deg_Late_Cretaceous_70Ma.nc' ##nok
    1. input_dem='./indata/Map19_PALEOMAP_1deg_Late_Cretaceous_80Ma.nc'
  1. input_dem="./indata/Map16_PALEOMAP_1deg_KT_Boundary_65Ma.nc"
  1. input_dem="./indata/Map43_PALEOMAP_1deg_Late_Triassic_200Ma.nc"
  1. input_dem='./indata/Map19_PALEOMAP_1deg_Late_Cretaceous_80Ma.nc' ## OK
  1. input_dem='./indata/Map21_PALEOMAP_1deg_Mid-Cretaceous_90Ma.nc' #90ma

input_dem='./maps1/Map49_PALEOMAP_1deg_Permo-Triassic Boundary_250Ma.nc' # PT raja co2 1600. jopa 3000-4000

  1. input_dem='./indata/Map57_PALEOMAP_1deg_Late_Pennsylvanian_300Ma.nc' ## Late Pennsylcanian ice, co2 200? 250?
  1. input_dem="./indata/Map56_PALEOMAP_1deg_Early_Permian_295Ma.nc"
  1. indatafile1='./indata/TOPicemsk.GLACD26kN9894GE90227A6005GGrBgic.nc'
  1. input_dem="origodem.nc"
  2. a_yr=14500
    1. load_glac1d_dem(indatafile1, input_dem, 14500)
    1. input one de scotese palaeomap dem!
  1. def convert_to_t42(infilename1, outfilename1):
  1. topo, lons, lats=convert_to_t21(input_dem, "demT21.nc")
  1. topo, lons, lats=convert_to_t42(input_dem, "demT42.nc")
  1. plt.imshow(topo,cmap='gist_earth')
  1. plt.show()
  1. input_dem="./sand.nc" ##dem of desert planet

a_modelname1="planet" a_workdir1="planet_run"

a_runsteps1=200 a_years1=a_runsteps1 a_timestep1=30 a_snapshots1=0 a_ncpus1=4 a_layers1=4 a_outputtype1=".nc" a_resolution1="T42"

  1. a_resolution1="T21"

a_precision1=4 a_crashtolerant1=True a_landmap1="landmask.sra" a_topomap1="topo.sra"

    1. nowadays ca 0 BP
  1. a_eccentricity1=0.01671022
  2. a_obliquity1=23.44
  3. a_lonvernaleq1=102.7
  4. a_pCO21=360e-6
    1. 10000 yrs ago
  1. a_eccentricity1=0.0194246086670259
  2. a_obliquity1=24.230720588
  3. a_lonvernaleq1=295.26651297
  4. a_pCO21=265e-6
    1. 14500 yrs ago
  1. a_eccentricity1=0.019595
  2. a_obliquity1=23.6801
  3. a_lonvernaleq1=221.5
  4. (229.64+213.3)/2
  5. a_pCO21=210e-6
    1. 25000 yrs ago
  1. a_eccentricity1=0.0178681374211005
  2. a_obliquity1= 22.408850897
  3. a_lonvernaleq1=49.92
  4. a_pCO21=180e-6
    1. cretaceous
  1. a_eccentricity1=0.0167022
  2. a_obliquity1=23.441
      1. a_lonvernaleq1=282.7
  1. a_lonvernaleq1=270
  2. a_pCO21=900.0e-6
  3. a_pCO21=500.0e-6
  4. a_pCO21=1200.0e-6
  1. https://climateresearchgroup.uta.edu/Publications/publications/2012/Winguth.A&Winguth.C-Glob&PlanetC-2012.pdf
  2. https://climateresearchgroup.uta.edu/Publications/publications/2012/Winguth.A&Winguth.C-Glob&PlanetC-2012.pdf
    1. earth current
  1. a_eccentricity1=0.01671022
  2. a_obliquity1=23.441
  3. a_lonvernaleq1=282.7
    1. attempt to make high precession seasonality
  1. a_solarconstant1=1338
  2. a_eccentricity1=0.0524
  3. a_obliquity1=23.8
  4. a_lonvernaleq1=270
    1. https://climateresearchgroup.uta.edu/Publications/publications/2012/Winguth.A&Winguth.C-Glob&PlanetC-2012.pdf
    1. attempt to make low precession seasonality

a_solarconstant1=1338 a_eccentricity1=0.0531 a_obliquity1=22.8 a_lonvernaleq1=90

  1. a_pCO21=3400e-6
  2. a_pCO21=6000e-6
  1. a_pCO21=3.0e-2
  2. a_pCO21=5000e-6
  3. a_pCO21=2500e-6
  4. a_pCO21=7500e-6
  1. a_pCO21=15000e-6
  1. a_pCO21=2500e-6
  2. a_pCO21=700.0e-6
  3. a_pCO21=450e-6
    1. early permian 295 ma
    2. late pennsylvanian 300 ma
  1. a_pCO2=250.0e-6 ## ca 200 - 250 ppmvol
  2. a_pCO21=180.0e-6
  3. a_pCO21=100.0e-6
    1. permo-triassic boundary ca 250 ma
  1. a_eccentricity1=0.01671022
  2. a_obliquity1=23.441
  3. a_lonvernaleq1=282.7
  4. a_pCO21=1600.0e-6 ## cal1600 ppmvol 3000 ? 2000-4000

a_solarconstant1=1338 a_eccentricity1=0.01671022 a_obliquity1=23.441 a_lonvernaleq1=282.7 a_pCO21=3500e-6

print("Exoplasim ...")

    1. if you run simu first time, you must set
  1. firstrun=1
  1. firstrun=1

firstrun=1

  1. a_years1=150)

exo_runner_restarting2(firstrun, input_dem, a_resolution1, a_layers1, a_years1,a_timestep1,a_snapshots1,a_ncpus1,a_solarconstant1, a_eccentricity1,a_obliquity1,a_lonvernaleq1,a_pCO21)

print(".")

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current05:31, 6 December 2023Thumbnail for version as of 05:31, 6 December 20231,040 × 720 (561 KB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.