File:Minimum error quantum state discrimination with a priori probs - animation.gif
Original file (972 × 972 pixels, file size: 1.75 MB, MIME type: image/gif, looped, 101 frames, 1.0 s)
Captions
Summary
[edit]DescriptionMinimum error quantum state discrimination with a priori probs - animation.gif |
English: Dependence on a priori probabilities of the form of measurement operators for minimum error quantum state discrimination for the case of two pure states. When the two a priori probabilities are identical, , the eigenvectors of measurement projectors are situated symmetrically around the (orange) initial states for . If can occur with higher probability , the eigenvectors are rotated towards this state. Analogously also for . Čeština: Závislost tvaru měřicích operátorů na apriorních pravděpodobnostech pro případ rozlišení dvou čistých kvantových stavů s minimální chybou. Pokud jsou obě apriorní pravděpodobnosti totožné, , jsou vlastní vektory měřicích projektorů rozmístěny souměrně kolem (oranžových) počátečních stavů pro . Může-li se vyskytnout s větší pravděpodobností , jsou vlastní vektory stočeny směrem k tomuto stavu. Analogicky pak i pro . |
Date | |
Source | Own work |
Author | JozumBjada |
Licensing
[edit]- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Source code
[edit]This animation was created using Wolfram language 12.0.0 for Microsoft Windows (64-bit) (April 6, 2019). The source code follows.
(* ::Package:: *)
(* ::Title:: *)
(*Minimum error quantum state discrimination for varying a priori probabilities*)
(* ::Input::Initialization:: *)
vec[char_,idx_,ang_,italic_:True,len_:1,off_:.15]:={Arrow[{{0,0},len AngleVector[ang ]}],Text[Style[ToString[Ket[Subscript[char,idx]],TraditionalForm],If[italic,Italic,Plain],30,FontFamily->"Times",Background->White],(1+off)AngleVector[ang],{0,0},AngleVector[ang]]}
(* ::Input::Initialization:: *)
With[{m=0.1},f[x_]:=Piecewise[{{1/2 (1+Clip[-1.5TriangleWave[1/(1-2 m) (x-1/2)],{-1,1}]),m<=x<=1-m}},1/2]]
(* ::Input::Initialization:: *)
grMEapriori[ang1_,ang2_,prob_:.5]:=Module[{ang1e,ang2e,q,\[Kappa],\[Lambda],e1,e2},
q=Abs@Cos[ang2-ang1];
\[Kappa]=(1-2(1-prob)q^2)/Sqrt[(1-2(1-prob)q^2)^2+(2(1-prob)q Sqrt[1-q^2])^2];
\[Lambda]=2 q (q \[Kappa]-Sqrt[1-q^2] Sqrt[1-\[Kappa]^2]);
e1=1/Sqrt[2(1-q^2)] (Sqrt[1+\[Kappa]-\[Lambda]]AngleVector[ang1]-Sqrt[1-\[Kappa]]AngleVector[ang2]);
e2=1/Sqrt[2(1-q^2)] (-Sqrt[1-\[Kappa]+\[Lambda]]AngleVector[ang1]+Sqrt[1+\[Kappa]]AngleVector[ang2]);
ang1e=ArcTan[e1[[1]],e1[[2]]];
ang2e=ArcTan[e2[[1]],e2[[2]]];
Graphics[{
Circle[{0,0},1],
{Thickness[0.003],Dashing[0.02],Line[{{{-1,0},{1,0}},{{0,-1},{0,1}}}]},
{Thickness[0.005],Arrowheads[0.05],
{
{Opacity[Sqrt[prob],Orange],vec["\[Psi]",1,ang1,False]},
{Opacity[Sqrt[1-prob],Orange],vec["\[Psi]",2,ang2,False]}
},
{Blue,vec["e",1,ang1e],vec["e",2,ang2e],Disk[{0,0},.1,{ang1e,ang2e}]},
{
Text[Style[Row[{Style[Subscript["p",1],Italic],"\[VeryThinSpace]=\[VeryThinSpace]",ToString[NumberForm[Chop@N@prob,{2,2}]]}],30,FontFamily->"Times"],ImageScaled[{.83,.55}]],
Text[Style[Row[{Style[Subscript["p",2],Italic],"\[VeryThinSpace]=\[VeryThinSpace]",ToString[NumberForm[Chop[1.-prob],{2,2}]]}],30,FontFamily->"Times"],ImageScaled[{.7,.85}]]
},
{Black,PointSize[0.02],Point[{0,0}]}
}
},ImageSize->700,PlotRange->{.7+{-1.25,1.25},{-1.25,1.25}},Background->None]
];
grMEapriori[.1,.8,.5]
(* ::Input::Initialization:: *)
animationMEapriori[t_]:=grMEapriori[0.1,0.8,f[t]]
(* ::Input::Initialization:: *)
exportAnimation[fun_,name_,resolution_:100]:=Module[{seq},
SetDirectory[NotebookDirectory[]];
seq=Table[fun[t],{t,0,1,.01}];
Export[name<>".gif",seq,AnimationRepetitions->Infinity,"DisplayDurations"->0.01,"TransparentColor"->Automatic,ImageResolution->resolution]
]
(* ::Input:: *)
(*(*Plot[f[x],{x,0,1}]*)*)
(* ::Input:: *)
(*(*Manipulate[grMEapriori[0.1,0.8,p],{p,0,1}]*)*)
(* ::Input:: *)
(*(*Manipulate[animationMEapriori[t],{t,0,1}]*)*)
(* ::Input:: *)
(*exportAnimation[animationMEapriori,"animMEapriori"]*)
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 21:33, 9 December 2021 | 972 × 972 (1.75 MB) | JozumBjada (talk | contribs) | Cross-wiki upload from cs.wikipedia.org |
You cannot overwrite this file.
File usage on Commons
There are no pages that use this file.
File usage on other wikis
The following other wikis use this file:
- Usage on cs.wikipedia.org
- Usage on pl.wikipedia.org
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
GIF file comment | Created with the Wolfram Language : www.wolfram.com |
---|