File:Mean precipitation 240ma 1.png
Original file (1,800 × 900 pixels, file size: 1.43 MB, MIME type: image/png)
Captions
Summary
[edit]DescriptionMean precipitation 240ma 1.png |
English: Annual mean precipitation 240 Ma, Trias period. |
Date | |
Source | Own work |
Author | Merikanto |
This image is based data from exoplasim simulation and Scotese paleodem maps.
https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/
PaleoDEM Resource – Scotese and Wright (2018) 11 August, 2018 by Sabin Zahirovic
PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic
Scotese, Christopher R, & Wright, Nicky M. (2018). PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5460860
Scotese, Christopher R; Wright, Nicky M https://zenodo.org/record/5460860
Params from exoplasim
triassic middle
a_eccentricity1=0.0167022 a_obliquity1=23.441 a_lonvernaleq1=102.7
a_pCO21=1400.0e-6
Codes to produce pre-datra for this
https://commons.wikimedia.org/wiki/File:World_200ma_6.webp
Creeata matplotlib plot
- python draw mean precip map from exoplasim output
- 19.6.2022 v 0000.0000
import netCDF4 as nc
import numpy as np
from scipy import interpolate
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
from matplotlib.pylab import *
import matplotlib.mlab as mlab
def ncread(fn1, var1):
ds2 = nc.Dataset(fn1)
varr1=ds2[var1]
return(varr1)
def savenetcdf_single_frommem(outfilename1, outvarname1, xoutvalue1,xoutlats1,xoutlons1):
nlat1=len(xoutlats1)
nlon1=len(xoutlons1)
#indata_set1=indata1
print(outfilename1)
ncout1 = nc.Dataset(outfilename1, 'w', format='NETCDF4')
outlat1 = ncout1.createDimension('lat', nlat1)
outlon1 = ncout1.createDimension('lon', nlon1)
outlats1 = ncout1.createVariable('lat', 'f4', ('lat',))
outlons1 = ncout1.createVariable('lon', 'f4', ('lon',))
outvalue1 = ncout1.createVariable(outvarname1, 'f4', ('lat', 'lon',))
outvalue1.units = 'Unknown'
outlats1[:] = xoutlats1
outlons1[:] = xoutlons1
outvalue1[:, :] =xoutvalue1[:]
ncout1.close()
return 0
def ncsave_T21(oname1, ovar1, ovals1):
newx=64
newy=32
X = np.arange(-180, 180, 360/newx)
Y = np.arange(-90, 90, 180/newy)
savenetcdf_single_frommem(oname1, ovar1,ovals1,Y, X)
from matplotlib.colors import LinearSegmentedColormap
cm_data = [[0.2081, 0.1663, 0.5292], [0.2116238095, 0.1897809524, 0.5776761905],
[0.212252381, 0.2137714286, 0.6269714286], [0.2081, 0.2386, 0.6770857143],
[0.1959047619, 0.2644571429, 0.7279], [0.1707285714, 0.2919380952,
0.779247619], [0.1252714286, 0.3242428571, 0.8302714286],
[0.0591333333, 0.3598333333, 0.8683333333], [0.0116952381, 0.3875095238,
0.8819571429], [0.0059571429, 0.4086142857, 0.8828428571],
[0.0165142857, 0.4266, 0.8786333333], [0.032852381, 0.4430428571,
0.8719571429], [0.0498142857, 0.4585714286, 0.8640571429],
[0.0629333333, 0.4736904762, 0.8554380952], [0.0722666667, 0.4886666667,
0.8467], [0.0779428571, 0.5039857143, 0.8383714286],
[0.079347619, 0.5200238095, 0.8311809524], [0.0749428571, 0.5375428571,
0.8262714286], [0.0640571429, 0.5569857143, 0.8239571429],
[0.0487714286, 0.5772238095, 0.8228285714], [0.0343428571, 0.5965809524,
0.819852381], [0.0265, 0.6137, 0.8135], [0.0238904762, 0.6286619048,
0.8037619048], [0.0230904762, 0.6417857143, 0.7912666667],
[0.0227714286, 0.6534857143, 0.7767571429], [0.0266619048, 0.6641952381,
0.7607190476], [0.0383714286, 0.6742714286, 0.743552381],
[0.0589714286, 0.6837571429, 0.7253857143],
[0.0843, 0.6928333333, 0.7061666667], [0.1132952381, 0.7015, 0.6858571429],
[0.1452714286, 0.7097571429, 0.6646285714], [0.1801333333, 0.7176571429,
0.6424333333], [0.2178285714, 0.7250428571, 0.6192619048],
[0.2586428571, 0.7317142857, 0.5954285714], [0.3021714286, 0.7376047619,
0.5711857143], [0.3481666667, 0.7424333333, 0.5472666667],
[0.3952571429, 0.7459, 0.5244428571], [0.4420095238, 0.7480809524,
0.5033142857], [0.4871238095, 0.7490619048, 0.4839761905],
[0.5300285714, 0.7491142857, 0.4661142857], [0.5708571429, 0.7485190476,
0.4493904762], [0.609852381, 0.7473142857, 0.4336857143],
[0.6473, 0.7456, 0.4188], [0.6834190476, 0.7434761905, 0.4044333333],
[0.7184095238, 0.7411333333, 0.3904761905],
[0.7524857143, 0.7384, 0.3768142857], [0.7858428571, 0.7355666667,
0.3632714286], [0.8185047619, 0.7327333333, 0.3497904762],
[0.8506571429, 0.7299, 0.3360285714], [0.8824333333, 0.7274333333, 0.3217],
[0.9139333333, 0.7257857143, 0.3062761905], [0.9449571429, 0.7261142857,
0.2886428571], [0.9738952381, 0.7313952381, 0.266647619],
[0.9937714286, 0.7454571429, 0.240347619], [0.9990428571, 0.7653142857,
0.2164142857], [0.9955333333, 0.7860571429, 0.196652381],
[0.988, 0.8066, 0.1793666667], [0.9788571429, 0.8271428571, 0.1633142857],
[0.9697, 0.8481380952, 0.147452381], [0.9625857143, 0.8705142857, 0.1309],
[0.9588714286, 0.8949, 0.1132428571], [0.9598238095, 0.9218333333,
0.0948380952], [0.9661, 0.9514428571, 0.0755333333],
[0.9763, 0.9831, 0.0538]]
parulamap = LinearSegmentedColormap.from_list('parula', cm_data)
parulamap_r = LinearSegmentedColormap.from_list('parula_r',cm_data[::-1])
infilename1="./origo/input.nc"
varname1="pr"
kaption1="Annual mean precipitation mm, 240 Ma"
infilename2="./origo/dem.nc"
savename1="mean_precipitation_240ma_1.png"
varr1=ncread(infilename1, varname1)
- varr1=np.flipud(varr0)
mask0=ncread(infilename1, "lsm")
mask1=mask0[1]
varr2=ncread(infilename2, "z")
mask2=np.flipud(np.array(varr2))
- mask2=mask2[mask2>0]=1
- plt.imshow(varr1)
- plt.show()
- quit(-1)
print(varr1)
means1=[]
for month in range(1,12):
varmonth1=varr1[month]
mean1=np.mean(varmonth1)
means1.append(mean1)
varmean1=np.mean(varr1,axis=0)
print(varmean1)
print (len(varmean1))
- plt.imshow(varmean1)
- plt.show()
- quit(-1)
print (means1)
mini1=np.min(means1)
maxi1=np.max(means1)
minlok1=means1.index(mini1)
maxlok1=means1.index(maxi1)
print(mini1,maxi1,minlok1, maxlok1)
- minitable1=varr1[minlok1]
- maxitable1=varr1[maxlok1]
minitable1=varr1[minlok1]-273.15
maxitable1=varr1[maxlok1]-273.15
- plt.imshow(minitable1)
ncsave_T21("tas_min.nc", "pr", minitable1)
coloris = parulamap_r
contourrange1=[0,200,400,800,1000,1200,1500,2000]
contourrange2=[0,2000]
contourrange3=np.arange(0,2000,50)
range3=np.arange(0,2000,2)
- dravar1=minitable1
dravar00=varmean1
dravar01=np.flipud(dravar00)
- precip ms-1 to mm/yr
dravar1=dravar01*3600*24*365*1000
- plt.imshow(dravar1)
- plt.show()
- quit(-1)
meanmean1=np.mean(dravar1)
print("Mean avg.", meanmean1)
plt.rcParams["figure.figsize"] = (18,9)
plt.title(kaption1, fontsize=24)
plt.xlabel("Longitude", fontsize=18)
plt.xticks(fontsize=18)
plt.ylabel("Latitude", fontsize=18)
plt.yticks(fontsize=18)
- plt.imshow( minitable1, extent=(-180,180,-90,90), cmap=kmap2, vmin=-50, vmax=50 )
- plt.imshow( mask1, extent=(-180,180,-90,90) )
cs2 = plt.contourf( dravar1,extent=(-180,180,-90,90), levels=range3,
cmap=coloris, extend='both')
cs = plt.contour(dravar1, extent=(-180,180,-90,90), inline=True, cmap=plt.cm.binary, alpha=0.7, levels=contourrange1)
cs0a = plt.contour(dravar1, extent=(-180,180,-90,90), inline=True, cmap=plt.cm.binary, alpha=0.7, linestyles=':',linewidths=0.4, levels=contourrange3)
plt.clabel(cs, fontsize=20, inline=1,fmt = '%3.0f')
cs3 = plt.contour( mask2,extent=(-180,180,-90,90), width=10, levels=[1],
cmap=plt.cm.binary, extend='both')
plt.savefig(savename1)
plt.show()
Licensing
[edit]
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
https://creativecommons.org/licenses/by-sa/4.0CC BY-SA 4.0 Creative Commons Attribution-Share Alike 4.0 truetrue
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 12:50, 19 June 2022 | 1,800 × 900 (1.43 MB) | Merikanto (talk | contribs) | Uploaded own work with UploadWizard |
You cannot overwrite this file.
File usage on Commons
There are no pages that use this file.
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Software used | |
---|---|
Horizontal resolution | 39.37 dpc |
Vertical resolution | 39.37 dpc |