File:Lavaplanet.jpg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file(1,080 × 1,080 pixels, file size: 545 KB, MIME type: image/jpeg)

Captions

Captions

Artist's impression of a lava planet

Summary

[edit]
Description
English: A lava planet is a type of terrestrial planet with a surface mostly or entirely covered by molten lava. Situations where such planets could exist include a young terrestrial planet just after its formation, a planet that has recently suffered a large collision event, or a planet orbiting very close to its star, causing intense irradiation and tidal forces.

Long lasting lava planets would probably orbit extremely close to their parent star. In planets with eccentric orbits, the gravity from the nearby star would distort the planet periodically, with the resulting friction producing internal heat. This tidal heating could melt rocks into magma, which would then erupt through volcanoes. This would be similar to the Solar System moon Io, orbiting close to its parent Jupiter. Io is the most geologically active world in the Solar System, with hundreds of volcanic centres and extensive lava flows. Lava worlds orbiting extremely closely to the parent star may possibly have even more volcanic activity than Io, leading some astronomers to use the term super-Io. These "super-Io" exoplanets may resemble Io with extensive sulfur concentrated on their surfaces that is associated with the continuous active volcanism.

However, tidal heating is not the only factor shaping a lava planet. In addition to tidal heating from orbiting close to their parent star, the intense stellar irradiation could melt the surface crust directly into lava. The entire star-facing surface of a tidally locked planet could be left covered in a lava ocean while the nightside may have lava lakes, or even lava rain caused by the condensation of vaporized rock from the dayside. The mass of the planet would also be a factor. The appearance of plate tectonics on terrestrial planets is related to planetary mass, with more massive planets than Earth expected to exhibit plate tectonics and thus more intense volcanic activity. Also, a Mega Earth may retain so much internal heat from its formation that a solid crust cannot form.

Protoplanets tend to have intense volcanic activity resulting from large amounts of internal heating just after formation, even relatively small planets that orbit far from their parent stars. Lava planets can also result from giant impacts; Earth was briefly a lava planet after being impacted by a Mars-sized body which formed the Moon.

Lava planets have low geometric albedos of around 0.1 and that molten lava on the surface can cool and harden to form quenched glass

There are no known lava worlds in the Solar System and the existence of extrasolar lava planets remains unknown. Several known exoplanets are likely lava worlds, given their small enough masses, sizes, and orbits. Likely lava exoplanets include COROT-7b, Kepler-10b, and Kepler-78b.
Date
Source Own work
Author Pablo Carlos Budassi

Planet concept illustrated especially for Wikimedia Commons by Pablo Carlos Budassi. Source: https://www.pablocarlosbudassi.com/2021/02/planet-types.html Background image by ESO/Serge Brunier: https://commons.wikimedia.org/wiki/File:ESO_-_Milky_Way.jpg Suggestions for improving this image are welcome: pablocarlosbudassi@gmail.com

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current15:44, 15 August 2023Thumbnail for version as of 15:44, 15 August 20231,080 × 1,080 (545 KB)Celestialobjects (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.

Metadata