File:JSr07885.gif
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
JSr07885.gif (500 × 400 pixels, file size: 8.25 MB, MIME type: image/gif, looped, 360 frames, 14 s)
File information
Structured data
Captions
Summary
[edit]DescriptionJSr07885.gif |
Русский: Анимация множества Жюлиа для квадратичного полинома fc(z)=z^2+C. Значения C для каждого кадра вычисляются по формуле: C=r*cos(a)+i*r*sin(a), где: a=(0..2*Pi), r=0,7885. Таким образом, параметр С описывает круг с радиусом r=0,7885 и центром в начале координат комплексной плоскости.
Смоделировано в Matlab R2011b используя алгоритм escape-time: A=10e6, max_iter=81. Цветовая схема - зеркалированный jet(40). Українська: Анімація множини Жюліа для квадратичного полінома fc(z)=z^2+C. Значення C для кожного кадру обчислюються за формулою: C=r*cos(a)+i*r*sin(a), де: a=(0..2*Pi), r=0,7885. Таким чином, параметр С описує коло з радіусом r=0,7885 та центром в початку координат комплексної площини.
Змодельовано в Matlab R2011b за алгоритмом escape-time: A=10e6, max_iter=81. Кольорова схема - зеркальований jet(40). English: The animation of the Julia set for the complex quadratic polinomial fc(z)=z^2+C. Values of C for each frame evaluates by equation: C=r*cos(a)+i*r*sin(a), where: a=(0..2*Pi), r=0.7885. Thus, parameter С outlines circle with a radius r=0.7885 and a center at origin of the complex plane.
Created in Matlab R2011b using escape-time algorithm:A=10e6, max_iter=81. Colormap - mirorred jet(40). Polski: Animacja zbioru Julii dla wielomianu kwadratowego zmiennej zespolonej . Wartości dla każdej ramki są obliczane ze wzoru , gdzie , . A zatem, parametr opisuje okrąg o promieniu i środku w początku płaszczyzny zespolonej.
Stworzono w Matlabie R2011b przy użyciu algorytmu escape-time: A=10e6 , max_iter=81 . Mapa kolorów – odwrócony jet(40) .Deutsch: Animation der Julia-Menge des komplexen quadratischen Polynoms fc(z)=z^2+C. |
Date | |
Source | Own work |
Author | Maxter315 |
GIF development InfoField | This animation was created with MATLAB. |
This image was uploaded as part of European Science Photo Competition 2015. |
Licensing
[edit]I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Assessment
[edit]This file was selected as the media of the day for 22 April 2019. It was captioned as follows:
English: The animation of the Julia set for the complex quadratic polinomial fc(z)=z^2+C.
Other languages
Deutsch: Animation der Julia-Menge des komplexen quadratischen Polynoms fc(z)=z^2+C. English: The animation of the Julia set for the complex quadratic polinomial fc(z)=z^2+C. Русский: Анимация множества Жюлиа для квадратичного полинома fc(z)=z^2+C. Українська: Анімація множини Жюліа для квадратичного полінома fc(z)=z^2+C
|
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 22 October 2015 | 500 × 400 (8.25 MB) | Maxter315 (talk | contribs) | User created page with UploadWizard |
You cannot overwrite this file.
File usage on Commons
The following 10 pages use this file:
File usage on other wikis
The following other wikis use this file:
- Usage on cs.wikipedia.org
- Usage on el.wikipedia.org
- Usage on en.wikipedia.org
- Usage on en.wikibooks.org
- Usage on fr.wikipedia.org
- Usage on fr.wikiquote.org
- Usage on he.wikipedia.org
- Usage on ro.wikipedia.org
- Usage on ru.wikipedia.org
- Usage on sv.wikipedia.org
- Usage on tt.wikipedia.org
- Usage on uk.wikipedia.org
- Usage on vep.wikipedia.org