File:Icosaedro de Joel.gif

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Icosaedro_de_Joel.gif (462 × 367 pixels, file size: 1.94 MB, MIME type: image/gif, looped, 239 frames, 18 s)

Captions

Captions

It is an irregular convex polyhedron, which has 20 Joel triangular irregular uniform faces, 30 non-uniform intermediate edges, and 20 non-uniform intermediate vertices.

Summary

[edit]
Description
Español: Icosaedro de Leonardo ampliado o icosaedro de Joel: Está compuesto por 20 triángulos isósceles de Joel, los cuales son uniformes entre sí, 12 vértices intermedios, 20 aristas mayores uniformes y 10 aristas menores uniformes, donde las arista mayores no son iguales a las arista menores.

El icosaedro de Joel es también llamado con el nombre de Icosaedro de Leonardo ampliado.

Triángulo isósceles mayor o triangulo isósceles de Joel: es el triangulo cuyos dos lados iguales llamados patas son de mayor medida, que el lado desigual llamado base.

Este símbolo (>) representa la palabra mayor que. Este símbolo numérico conocido como tres (3) representa la palabra triangulo. Este símbolo literal conocido como (s) representa la palabra isósceles. 3s> = triangulo isósceles de Joel o triangulo de Joel.

El triángulo isósceles de Joel, está representado por los símbolos alfa numéricos: 3s<.

El ángulo que forma uno de los dos lados llamado pata de un triángulo de Joel, con el lado llamado base, siempre es mayor de sesentas grados. El profesor Jose Joel Leonardo descubrió este solido geométrico el 15 de abril de año 2015. Si aplicamos las fórmulas de sucesiones poliédricas triangulares, del Dominicano Jose Joel Leonardo. : C = caras, A = aristas, V = vértices, L= lugar correspondiente al solido geométrico triangular en la sucesión poliédrica. Formulas: A = 3L+3, C = 2L+2, V = L+3, Este poliedro posee 20 caras, C = 20, entonces despejamos en (C = 2L+2), el valor de L. L = C -2/2, sustituyendo C =20. L= 20-2/2 = 18/2 = 9, L = 9. Aplicando formulas y sustituyendo el Valor de L=9. A = 3L+3 = 3(9)+3 = 27+3 = 30, A =30. C = 2L+2 = 2(9)+2 = 18+2 = 20, C =20. V = L + 3 = (9) + 3 = 9 + 3 = 12, V =12

Hemos verificado que las sucesiones poliédricas triangulares se cumplen en este solido geométrico.
English: Icosahedron of Leonardo expanded or icosahedron of Joel: It is composed of 20 isosceles triangles of Joel, which are uniform to each other, 12 intermediate vertices, 20 uniform major edges and 10 uniform minor edges, where the major edges are not equal to the minor edges .

Joel's icosahedron is also called by the name of Leonardo's expanded Icosahedron.

Isosceles greater triangle or Joel's isosceles triangle: it is the triangle whose two equal sides called legs are of greater measure, than the unequal side called base.

This symbol (>) represents the word greater than. This numerical symbol known as three (3) represents the word triangle. This literal symbol known as (s) represents the word isosceles. 3s> = Joel's isosceles triangle or Joel's triangle.

Joel's isosceles triangle is represented by the alpha numeric symbols: 3s <.

The angle between one of the two sides called the leg of a Joel triangle, with the side called the base, is always greater than sixty degrees. Professor Jose Joel Leonardo discovered this geometric solid on April 15, 2015. If we apply the formulas of triangular polyhedral successions, of the Dominican Jose Joel Leonardo. : C = faces, A = edges, V = vertices, L = place corresponding to the triangular geometric solid in the polyhedral sequence. Formulas: A = 3L + 3, C = 2L + 2, V = L + 3, This polyhedron has 20 faces, C = 20, so we solve for (C = 2L + 2), the value of L. L = C -2/2, substituting C = 20. L = 20-2 / 2 = 18/2 = 9, L = 9. Applying formulas and substituting the Value of L = 9. A = 3L + 3 = 3 (9) +3 = 27 + 3 = 30, A = 30. C = 2L + 2 = 2 (9) +2 = 18 + 2 = 20, C = 20. V = L + 3 = (9) + 3 = 9 + 3 = 12, V = 12

We have verified that the triangular polyhedral sequences are fulfilled in this geometric solid.
Français : Icosaèdre de Léonard élargi ou icosaèdre de Joel: Il est composé de 20 triangles isocèles de Joel, qui sont uniformes les uns aux autres, 12 sommets intermédiaires, 20 arêtes majeures uniformes et 10 arêtes mineures uniformes, où les arêtes majeures ne sont pas égales aux arêtes mineures .

L'icosaèdre de Joel est également appelé par le nom de l'icosaèdre élargi de Léonard.

Triangle plus grand isocèle ou triangle isocèle de Joël: c'est le triangle dont les deux côtés égaux appelés jambes sont de plus grande mesure, que le côté inégal appelé base.

Ce symbole (>) représente le mot supérieur à. Ce symbole numérique appelé trois (3) représente le mot triangle. Ce symbole littéral appelé (s) représente le mot isocèle. 3s> = triangle isocèle de Joel ou triangle de Joel.

Le triangle isocèle de Joel est représenté par les symboles alphanumériques: 3s <.

L'angle entre l'un des deux côtés appelé la jambe d'un triangle de Joel, avec le côté appelé la base, est toujours supérieur à soixante degrés. Le professeur Jose Joel Leonardo a découvert ce solide géométrique le 15 avril 2015. Si nous appliquons les formules de successions polyédriques triangulaires, du dominicain José Joel Leonardo. : C = faces, A = arêtes, V = sommets, L = lieu correspondant au solide géométrique triangulaire dans la suite polyédrique. Formules: A = 3L + 3, C = 2L + 2, V = L + 3, Ce polyèdre a 20 faces, C = 20, donc nous résolvons pour (C = 2L + 2), la valeur de L. L = C -2/2, en remplaçant C = 20. L = 20-2 / 2 = 18/2 = 9, L = 9. Application de formules et substitution de la valeur de L = 9. A = 3L + 3 = 3 (9) +3 = 27 + 3 = 30, A = 30. C = 2L + 2 = 2 (9) +2 = 18 + 2 = 20, C = 20. V = L + 3 = (9) + 3 = 9 + 3 = 12, V = 12

Nous avons vérifié que les séquences polyédriques triangulaires sont remplies dans ce solide géométrique.
Date
Source Own work
Author Jose J. Leonard

https://www.geogebra.org/m/dbt8r3ez https://commons.wikimedia.org/wiki/File:Icosaedro_De_Leonardo.gif https://es.wikipedia.org/wiki/S%C3%B3lidos_de_Catalan File:Sucesiones_Poliedricas_Triangulares.jpg File:Clasificación_De_Triángulos_Según_Sus_Lados.jpg

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current22:30, 27 December 2020Thumbnail for version as of 22:30, 27 December 2020462 × 367 (1.94 MB)Jose J. Leonard (talk | contribs)Uploaded own work with UploadWizard

The following page uses this file:

Metadata