File:Gliese 12 b temperature profile if rotating ocean planet 1.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file(813 × 528 pixels, file size: 150 KB, MIME type: image/png)

Captions

Captions

Gliese 12 b temperature profile if rotating ocean planet

Summary

[edit]
Description
English: Gliese 12 b temperature profile if rotating ocean planet
Date
Source Own work
Author Merikanto

Python3 source code

    1. temperatures, if S=0.93*S0
    2. sun radiation down 10% from current.
  1. python3/climblab code
  2. 10.5.2023 0000.0002

import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import climlab from climlab import constants as const

def plot_temp_section(model, timeave=True):

   fig = plt.figure()
   ax = fig.add_subplot(111)
   #viridis = cm.get_cmap('jet')
   #viridis = cm.get_cmap('turbo')
   #viridis = cm.get_cmap('winter')
   viridis = cm.get_cmap('cool_r')
   #viridis = cm.get_cmap('PuBu')
   plt.set_cmap(viridis)
   if timeave:
       field = model.timeave['Tatm'].transpose()
   else:
       field = model.Tatm.transpose()
   levels1=[-90,-80,-70,-60,-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90,100]
   cax = ax.contourf(model.lat, model.lev,field-273.15, levels=200)
   CS = ax.contour(model.lat, model.lev,field-273.15,levels=levels1,
                colors='k'  # negative contours will be dashed by default
                )
   ax.clabel(CS,fmt='%1.1f',fontsize=14, inline=1)
   ax.invert_yaxis()
   ax.set_title("Temperature profile", fontsize=18)
   ax.set_xlabel("Latitude", fontsize=15)
   ax.set_ylabel("Pressure", fontsize=15)
   ax.xaxis.set_tick_params(labelsize=14)
   ax.yaxis.set_tick_params(labelsize=14)
   ax.set_xlim(-90,90)
   ax.set_xticks([-90, -60, -30, 0, 30, 60, 90])
   #cbar1=fig.colorbar(cax)
   #cbar1.ax.tick_params(labelsize=15)

rau=1.0 ## planet a au S1=1365.2

  1. insok=1/(rau*rau) ## insolation coefficient"

insok=1.63 alb=0.299

  1. alb=0.06

greenhouse=0.0 cloudiness=1 waterdepth=100

print(rau, insok)

    1. not used

delta_t = 60. * 60. * 24. * 30

absorber_vmr = {'CO2':420/1e6,

               'CH4':0.,
               'N2O':0.,
               'O2':0.,
               'CFC11':0.,
               'CFC12':0.,
               'CFC22':0.,
               'CCL4':0.,
               'O3':0.}
  1. state = climlab.column_state(num_lev=20, num_lat=1, water_depth=5.)

state = climlab.column_state(num_lev=12, num_lat=16, water_depth=waterdepth)

insol = climlab.radiation.DailyInsolation(name='Insolation',

                                         domains=state['Ts'].domain, S0=S1*insok)
  1. olr = climlab.radiation.Boltzmann(name='OutgoingLongwave',state=state, tau = 0.612,eps = 1.,timestep = delta_t)
  1. asr = climlab.radiation.SimpleAbsorbedShortwave(name='AbsorbedShortwave',
  2. state=state,
  3. insolation=341.3,
  4. insolation=insol.insolation,
  5. albedo=alb,
  6. timestep = delta_t)
  1. rcm=climlab.TimeDependentProcess(state=state)
  1. h2o = climlab.radiation.ManabeWaterVapor(name='H2O', state=state)

h2o = climlab.radiation.ManabeWaterVapor(state=state, relative_humidity=1.0)

  1. CAM3 radiation with default parameters and interactive water vapor
  1. rad = climlab.radiation.CAM3(name='Radiation', state=state,specific_humidity=h2o.q, albedo=alb)

rad = climlab.radiation.CAM3(name='Radiation', state=state, return_spectral_olr=True, icld=cloudiness, S0 = insol.S0*insok*(1+greenhouse), insolation=insol.insolation, coszen=insol.coszen

  1. absorber_vmr = absorber_vmr2

)

print(insol.S0)

  1. rad = climlab.radiation.CAM3(name='Radiation',
  2. state=state,
  3. specific_humidity=h2o.q,
  4. S0 = insol.S0,
  5. insolation=insol.insolation,
  6. coszen=insol.coszen)
  1. rad = climlab.radiation.RRTMG_LW(state=state,
  2. specific_humidity=h2o.q,
  3. S0 = insol.S0,
  4. insolation=insol.insolation,
  5. icld=0, # Clear-sky only!
  6. return_spectral_olr=False, # Just return total OLR
  7. absorber_vmr = absorber_vmr)

conv = climlab.convection.ConvectiveAdjustment(name='Convective Adjustment',state=state, adj_lapse_rate=6.5)

rcm = climlab.couple([rad,conv,h2o, insol], name='RCM')

  1. print(rcm)
  1. quit(-1)
  1. rcm.add_subprocess('Radiation', rad)
  2. rcm.add_subprocess('WaterVapor', h2o)
  3. rcm.add_subprocess('Convection', conv)
  1. rcm.integrate_years(1)

rcm.integrate_years(3)

  1. fig, ax = plt.subplots(dpi=100)
  1. state['Tatm'].to_xarray().plot(ax=ax, y='lev', yincrease=False)
  1. state['Tatm'].to_xarray().plot(ax=ax,x='lat', y='lev', yincrease=False)

tatm=state['Tatm']-273.15

  1. quit(-1)
  1. Create and exact clone of the previous model

diffmodel = climlab.process_like(rcm)

diffmodel.name = 'Seasonal RCE with heat transport'

  1. thermal diffusivity in W/m**2/degC

D = 0.05

  1. D=0.0001
  1. meridional diffusivity in m**2/s

K = D / diffmodel.Tatm.domain.heat_capacity[0] * const.a**2 print("K ", K) d = climlab.dynamics.MeridionalDiffusion(K=K, state={'Tatm': diffmodel.Tatm}, **diffmodel.param) diffmodel.add_subprocess('Meridional Diffusion', d)

  1. diffmodel = climlab.couple([rad,conv,h2o, insol,d], name='Seasonal diffmodel')

print(diffmodel)

diffmodel.integrate_years(1) diffmodel.integrate_years(50)

tatm2=state['Tatm']-273.15

print(tatm2)

print("Plot ")

  1. plot_temp_section(rcm, timeave=True)
  1. plot_temp_section(diffmodel, timeave=True)

plot_temp_section(diffmodel, timeave=True)

tlayer1=tatm[...,11].ravel() tlayer2=tatm[...,11].ravel()

  1. print (" Tatmlen",len(tlayer1))

tlayer1=np.nan_to_num(tlayer1) tlayer2=np.nan_to_num(tlayer2)

meantemp=np.mean(tlayer1) meantemp2=np.mean(tlayer2)

print(tlayer1) print(tlayer2)

print(" meantemp A ",meantemp) print(" meantemp B ",meantemp2)

  1. plot_temp_section(rcm, timeave=True)
  1. plt.imshow(tatm)
  1. ax.set_xlabel("Temperature (K)")
  2. ax.set_ylabel("Pressure (hPa)")
  3. ax.grid()
  1. plt.plot()

plt.show()

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:31, 25 May 2024Thumbnail for version as of 17:31, 25 May 2024813 × 528 (150 KB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.

Metadata