File:Gliese 12 b temperature if fast rotating ocean planet 2.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file(923 × 500 pixels, file size: 33 KB, MIME type: image/png)

Captions

Captions

Gliese 12 b temperature if fast rotating ocean planet

Summary

[edit]
Description
English: Gliese 12 b temperature if fast rotating ocean planet
Date
Source Own work
Author Merikanto

POvRay source code

                                                                        1. 3
    1. slushball Earth
    1. seasonal climlab energy balance model
  1. python3/climlab code
  2. 23.10.2023 0000.0004a
                                                    1. 3

import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import climlab from climlab import constants as const from climlab.process.diagnostic import DiagnosticProcess from climlab.domain.field import Field, global_mean


numyears=500 plotvar=0 ## 1,2,3 lot temp, ice, mean albedo

S1=1365.2*1.63

  1. S1=1361*0.93

co2=280

  1. orbit={'ecc': 0.0167643, 'long_peri': 280.32687, 'obliquity': 23.459277, 'S0':S1}

orbit={'ecc': 0.0, 'long_peri': 0.0, 'obliquity': 0.0, 'S0':S1}

title0=' Gliese 12 b ' title1='Temperatures throughout the year °C \n if S0 = '+ str(S1) +' W m-2 , pressure of CO2 = '+str(co2)+' ppm volume'

class tanalbedo(DiagnosticProcess):

   def __init__(self, **kwargs):
       super(tanalbedo, self).__init__(**kwargs)
       self.add_diagnostic('albedo')
       Ts = self.state['Ts']
       self._compute_fixed()
   def _compute_fixed(self):
       Ts = self.state['Ts']
       try:
           lon, lat = np.meshgrid(self.lon, self.lat)
       except:
           lat = self.lat
       phi = lat
       try:
           albedo=np.zeros(len(phi));
           albedo=0.42-0.20*np.tanh(0.052*(Ts-3))
       except:
           albedo = np.zeros_like(phi)
       dom = next(iter(self.domains.values()))
       self.albedo = Field(albedo, domain=dom)
   def _compute(self):
       self._compute_fixed()
       return {}
  1. creating EBM model
  1. ebm= climlab.EBM(CO2=co2,orbit={'ecc': 0.0167643, 'long_peri': 280.32687, 'obliquity': 23.459277, 'S0':S1})

ebm0= climlab.EBM_seasonal(water_depth=10.0, a0=0.3, num_lat=90, lum_lon=None, num_lev=10,num_lon=None , orbit=orbit)

ebm=climlab.process_like(ebm0)

  1. ebm.step_forward()
  2. print(ebm.diagnostics)
  1. quit(-1)

surface = ebm.domains['Ts']

  1. define new insolation and SW process

ebm.remove_subprocess('insolation') insolation = climlab.radiation.DailyInsolation(domains=surface, orb = orbit, **ebm.param) insolation.S0=S1

    1. sun = climlab.radiation.DailyInsolation(domains=model.Ts.domain)

ebm.add_subprocess('insolation', insolation)

  1. ebm.step_forward()
  1. print(insolation.diagnostics)
  1. print (insolation.insolation)
  2. print (np.max(insolation.insolation))
    1. print(insolation.S0)
  1. quit(-1)

ebm.remove_subprocess('albedo') alb = climlab.surface.albedo.StepFunctionAlbedo(state=ebm.state, Tf=-10, **ebm.param)

  1. alb = climlab.surface.albedo.ConstantAlbedo(domains=surface, **ebm.param)
  2. alb = tanalbedo(state=ebm.state, **ebm.param)

ebm.add_subprocess('albedo', alb) ebm.remove_subprocess('SW') SW = climlab.radiation.absorbed_shorwave.SimpleAbsorbedShortwave(insolation=insolation.insolation, state = ebm.state, albedo = alb.albedo, **ebm.param) ebm.add_subprocess('SW', SW) ebm.remove_subprocess('Lw') LW = climlab.radiation.aplusbt.AplusBT_CO2(CO2=co2,state=ebm.state, **ebm.param) ebm.add_subprocess('LW', LW)

  1. print(SW.diagnostics)
  1. quit(-1)
  1. ebm.CO2=co2

ebm.remove_subprocess('diffusion') diff = climlab.dynamics.MeridionalMoistDiffusion(state=ebm.state, timestep=ebm.timestep) ebm.add_subprocess('diffusion', diff)

  1. print (ebm)

ebm.step_forward()

  1. ebm.diagnostics
  1. ebm.integrate_years(numyears)

ebm.integrate_converge()

  1. print(ebm.Ts)
  1. plt.plot(ebm.Ts)
  1. plt.show()

num_steps_per_year = int(ebm.time['num_steps_per_year']) mean_year = np.empty(num_steps_per_year) for m in range(num_steps_per_year): ebm.step_forward() mean_year[m] = ebm.global_mean_temperature() Tmean_year = np.mean(mean_year)

print(round(Tmean_year,2))

if(plotvar==0):

       num_steps_per_year = int(ebm.time['num_steps_per_year'])
       Tyear = np.empty((ebm.lat.size, num_steps_per_year))
       for m in range(num_steps_per_year):
           ebm.step_forward()
           Tyear[:,m] = np.squeeze(ebm.Ts)
       Tmin=np.min(Tyear)
       Tmax=np.max(Tyear)
       
       fig = plt.figure(figsize=(5,5))
       ax = fig.add_subplot(111)
       
       factor = 365. / num_steps_per_year
       #cmap1=plt.cm.seismic
       #cmap1=plt.cm.turbo
       cmap1=plt.cm.coolwarm
       #cmap1=plt.cm.winter
       #cmap1=plt.cm.cool_r
       #cmap1=plt.cm.cool
       #cmap1=cmap1.reversed()      
       #levels1=[-80,-70,-60,-50,-40,-30]
       levels2=[-200,-100,-70,-60,-50,-40,-30,-20,-10,0,10,20,30,40,50,60,80,90, 95,100,105,110, 200,300,500]
       levels2=[90,92,95,98,100,102,105,110,120]
       Tminv=60
       Tmaxv=110
       #cax = ax.contourf(factor * np.arange(num_steps_per_year),
       #              ebm.lat, Tyear[:,:], 
       #              cmap=cmap1, vmin=Tminv, vmax=Tmaxv, antialiased=False, levels=256)
       ax.imshow(Tyear[:,:],origin="lower", extent=[0,360,-90,90],cmap=cmap1, vmin=Tminv, vmax=Tmaxv, interpolation="bicubic")
       cs1 = ax.contour(factor * np.arange(num_steps_per_year),ebm.lat, Tyear[:,:],   origin="lower", extent=[0,360,-90,90],colors='#00005f', vmin=Tminv, vmax=Tmaxv, levels=levels2)
       ax.clabel(cs1, cs1.levels, inline=True, fontsize=14)                     
       #cbar1 = plt.colorbar(cax)
       ax.set_title(title1, fontsize=12)
       fig.suptitle(title0, fontsize=22)
       ##ax_set_suptitle(title0, fontsize=18)
       ax.tick_params(axis='x', labelsize=12)
       ax.tick_params(axis='y', labelsize=12)
       ax.set_xlabel('Days of year', fontsize=13)
       ax.set_ylabel('Latitude', fontsize=13)
       plt.tight_layout()
       plt.savefig('1000dpi.svg', dpi=1000)

if(plotvar==1):

       if 'Tf' in ebm.subprocess['albedo'].param.keys():
           Tf = ebm.subprocess['albedo'].param['Tf']
       else:
           print('No ice considered in this model. Can not plot.')
       num_steps_per_year = int(ebm.time['num_steps_per_year'])
       ice_year = np.empty((ebm.lat.size, num_steps_per_year))
       for m in range(num_steps_per_year):
           ebm.step_forward()
           ice_year[:,m] = np.where(np.squeeze(ebm.Ts) <= Tf, 0, 1)
       
       fig = plt.figure(figsize=(5,5))
       ax = fig.add_subplot(111)
       
       factor = 365. / num_steps_per_year
       cax = ax.contourf(factor * np.arange(num_steps_per_year),
                     ebm.lat, ice_year[:,:], 
                     cmap=plt.cm.seismic, vmin=0, vmax=1, levels=2)
       cbar1 = plt.colorbar(cax)
       
       ax.set_title('Ice throughout the year', fontsize=14)
       ax.set_xlabel('Days of year', fontsize=14)
       ax.set_ylabel('Latitude', fontsize=14)

if(plotvar==2):

       fig = plt.figure(figsize=(7.5,5))
       # Temperature plot
       ax2 = fig.add_subplot(111)
       ax2.plot(ebm.lat,ebm.albedo)
       ax2.set_title('Albedo', fontsize=14)
       ax2.set_xlabel('latitude', fontsize=10)
       ax2.set_ylabel(, fontsize=12)
       ax2.set_xticks([-90,-60,-30,0,30,60,90])
       ax2.set_xlim([-90,90])
       ax2.set_ylim([0,1])
       ax2.grid()


       plt.show()

plt.show()

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:42, 25 May 2024Thumbnail for version as of 17:42, 25 May 2024923 × 500 (33 KB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.

Metadata