File:Earth temperature with faint young sun 0p70 sol co2 100pros 1.png
Original file (1,100 × 623 pixels, file size: 205 KB, MIME type: image/png)
Captions
Summary
[edit]DescriptionEarth temperature with faint young sun 0p70 sol co2 100pros 1.png |
English: Earth temperature with faint young sun if S=0.70 sol and CO2=100 per cent of atmosphere pressure |
Date | |
Source | Own work |
Author | Merikanto |
Python 3 code
-
- snowball or slushball earth
-
- climlab python3 source code
- 24.10.2023 0000.0003c
-
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
import climlab
from climlab import constants as const
from climlab.dynamics import MeridionalDiffusion
numyears=20
S1_now=1361.5 ## current sol
- S1=1*0.93
- S1=1*0.416 ## Sucellus planet ts Early mars-like
- S1=1357.18*0.7 ## cretaceous impact
- 0.93 snowy ball
- S1=1365.2*0.82 ## huronian
- S1=0.77
- S1=1/1
- S1=0.44
- S1=1/1.15
- S1=0.93
- S1=0.83 ## huronian
S1=0.939 ## 3.8 Ga from oringin
S1=0.954 ## 4.0 Ga
S1=0.844 ## 2.4 Ga
S1=0.677 # 0 Ga
S1=0.721 ## 0.2 Ga
- S1=0.744 ##0.6 ga
S1=0.7
albedo=0.25
waterdepth1=5
cloudiness=0.5
S1_abs=S1_now*S1
orbit1={'ecc': 0.0167643, 'long_peri': 280.32687, 'obliquity': 23.459277, 'S0':S1_abs}
- faint young sun ch4++
- co2=280e-6
co2=1
o3=1/1e6
ch4=800/1e9
no2=270/1e9
o2=1-co2-ch4-no2-o3 ## O2, simulate N2
title0=' Earth and faint young sun '
title1='Temperatures throughout the year °C \n if S0 = '+ str(S1) +'*Ssol , CO2 = '+str(round(co2*1e2,2))+' % , CH4 = '+str(round(ch4*1e6,2))+' ppmv'
print(title1)
- quit(-1)
- NOTE
absorber_vmr1 = {'CO2':co2,
'CH4':ch4,
'N2O':no2,
'O2':o2,
'CFC11':1./1e9,
'CFC12':1./1e9,
'CFC22':1./1e9,
'CCL4':1./1e9,
'O3':o3}
- ...
num_lev = 24 ## 50
def plotmonths(Ts, lat):
global title1
lela=len(lat)
print(np.shape(Ts))
fig = plt.figure( figsize=(8,5) )
ax = fig.add_subplot(111)
clevels=10
Tmin=-50
Tmax=50
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
cax = ax.contourf(np.arange(365)+0.5, lat, Ts,cmap=plt.cm.coolwarm,vmin=Tmin, vmax=Tmax, levels=256 )
cc = ax.contour(np.arange(365)+0.5, lat, Ts, colors=['#00003f'],)
ax.clabel(cc, cc.levels, colors=['#00005f'], inline=True, fmt='%3.1f',fontsize=15)
#ax.set_tick_params(axis='both', which='minor', labelsize=15)
ax.set_xlabel('Day', fontsize=15)
ax.set_ylabel('Latitude', fontsize=15)
#cbar = plt.colorbar(cax)
#cbar.set_clim(-50.0, 50.0)
ax.set_title('Zonal mean surface temperatures (degC)', fontsize=16)
return(0)
def plotmonths2(model, Ts, lat):
global title1
Tmin=np.min(Ts)
Tmax=np.max(Ts)
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111)
factor = 365. / num_steps_per_year
#cmap1=plt.cm.seismic
#cmap1=plt.cm.turbo
cmap1=plt.cm.coolwarm
#cmap1=plt.cm.winter
#cmap1=plt.cm.cool_r
#cmap1=plt.cm.cool
#cmap1=cmap1.reversed()
#levels1=[-80,-70,-60,-50,-40,-30]
levels2=[-200,-100,-70,-60,-50,-45,-40,-35,-30,-25,-20,-15,-10,-5,0,5,10,15,20,25,30,35,40,45,50,55,60,65,80,100,200,300,500]
Tminv=-100
Tmaxv=120
#cax = ax.contourf(factor * np.arange(num_steps_per_year),
# ebm.lat, Tyear[:,:],
# cmap=cmap1, vmin=Tminv, vmax=Tmaxv, antialiased=False, levels=256)
ax.imshow(Ts[:,:],origin="lower", extent=[0,360,-90,90],cmap=cmap1, vmin=Tminv, vmax=Tmaxv, interpolation="bicubic")
cs1 = ax.contour(factor * np.arange(num_steps_per_year),model.lat, Ts[:,:], origin="lower", extent=[0,360,-90,90],colors='#00005f', vmin=Tminv, vmax=Tmaxv, levels=levels2)
ax.clabel(cs1, cs1.levels, inline=True, fontsize=14)
#cbar1 = plt.colorbar(cax)
ax.set_title(title1, fontsize=12)
fig.suptitle(title0, fontsize=22)
##ax_set_suptitle(title0, fontsize=18)
ax.tick_params(axis='x', labelsize=12)
ax.tick_params(axis='y', labelsize=12)
ax.set_xlabel('Days of year', fontsize=13)
ax.set_ylabel('Latitude', fontsize=13)
#plt.tight_layout()
plt.savefig('1000dpi.svg', dpi=1000)
return(0)
- main code
state = climlab.column_state(num_lev=num_lev, num_lat=90, water_depth=waterdepth1)
lev = state.Tatm.domain.axes['lev'].points
- Define two types of cloud, high and low
cldfrac = np.zeros_like(state.Tatm)
r_liq = np.zeros_like(state.Tatm)
r_ice = np.zeros_like(state.Tatm)
clwp = np.zeros_like(state.Tatm)
ciwp = np.zeros_like(state.Tatm)
- indices
- high = 10 # corresponds to 210 hPa
- low = 40 # corresponds to 810 hPa
high=1*2
low=9*2
- A high, thin ice layer (cirrus cloud)
- r_ice[:,high] = 14. # Cloud ice crystal effective radius (microns)
- ciwp[:,high] = 10. # in-cloud ice water path (g/m2)
- cldfrac[:,high] = 0.322
- A low, thick, water cloud layer (stratus)
- r_liq[:,low] = 14. # Cloud water drop effective radius (microns)
- clwp[:,low] = 100. # in-cloud liquid water path (g/m2)
- cldfrac[:,low] = 0.21
- A high, thin ice layer (cirrus cloud)
r_ice[:,high] = 14. # Cloud ice crystal effective radius (microns)
ciwp[:,high] = 2. # in-cloud ice water path (g/m2)
cldfrac[:,high] = 0.1
- A low, thick, water cloud layer (stratus)
r_liq[:,low] = 14. # Cloud water drop effective radius (microns)
clwp[:,low] = 4. # in-cloud liquid water path (g/m2)
cldfrac[:,low] = 0.05
- wrap everything up in a dictionary
mycloud = {'cldfrac': cldfrac,
'ciwp': ciwp,
'clwp': clwp,
'r_ice': r_ice,
'r_liq': r_liq}
- plt.plot(cldfrac[0,:], lev)
- plt.gca().invert_yaxis()
- plt.ylabel('Pressure hPa')
- plt.xlabel('Cloud fraction')
- plt.title('Cloud fraction in the column model')
- plt.show()
- quit(-1)
model = climlab.TimeDependentProcess(state=state, name='Radiative-Convective-Diffusive Model')
h2o = climlab.radiation.ManabeWaterVapor(state=state)
conv = climlab.convection.ConvectiveAdjustment(state={'Tatm':model.state['Tatm']},
adj_lapse_rate=6.5,
**model.param)
sun = climlab.radiation.DailyInsolation(name='Insolation',
domains=state['Ts'].domain, S0=S1_abs, orb=orbit1)
rad = climlab.radiation.RRTMG(state=state,
specific_humidity=h2o.q,
albedo=albedo,
S0=S1_abs,
co2vmr=co2,ch4vmr=ch4,
n2ovmr=no2,o2vmr=o2,
cfc11vmr=0.0,cfc12vmr=0.00,cfc22vmr=0.00,
ccl4vmr=0.0,o3vmr=o3,
insolation=sun.insolation,
coszen=sun.coszen,
absorber_vmr = absorber_vmr1,
**mycloud)
- no clouds !!!
- rad = climlab.radiation.CAM3(name='Radiation', state=state,return_spectral_olr=True,icld=cloudiness,S0 = S1_abs,
- insolation=sun.insolation,coszen=sun.coszen,albedo=albedo,absorber_vmr = absorber_vmr3)
model.add_subprocess('Radiation', rad)
model.add_subprocess('Insolation', sun)
model.add_subprocess('WaterVapor', h2o)
model.add_subprocess('Convection', conv)
- print(model.subprocess['Radiation'].state)
- quit(-1)
- thermal diffusivity SI units
D = 0.04
- meridional diffusivity SI units
K = D / model.Tatm.domain.heat_capacity[0] * const.a**2
d = MeridionalDiffusion(state={'Tatm': model.state['Tatm']},
K=K, **model.param)
model.add_subprocess('Diffusion', d)
shf = climlab.surface.SensibleHeatFlux(state=model.state, Cd=0.5E-3)
lhf = climlab.surface.LatentHeatFlux(state=model.state, Cd=0.5E-3)
lhf.q = h2o.q
model.add_subprocess('SHF', shf)
model.add_subprocess('LHF', lhf)
- model.subprocess['LHF'].Cd *= 0.5
- 2x co2
- model.subprocess['LW'].absorptivity = model.subprocess['LW'].absorptivity*1.1
- quit(-1)
- One more year to get annual-mean diagnostics
- model.step_forward()
- model.integrate_years(1.)
model.integrate_years(numyears)
- this is very slooow ...
- model.integrate_converge()
lat = model.lat
num_steps_per_year = int(model.time['num_steps_per_year'])
Tss = np.empty((lat.size, num_steps_per_year))
for n in range(num_steps_per_year):
model.step_forward()
Ts=model.Ts
Tss[:,n] = np.squeeze(Ts)
plotmonths2(model, Tss-273.15, lat)
plt.show()
print(".")
quit(-1)
Licensing
[edit]- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 11:00, 24 October 2023 | 1,100 × 623 (205 KB) | Merikanto (talk | contribs) | Update | |
09:00, 24 October 2023 | 1,061 × 570 (203 KB) | Merikanto (talk | contribs) | Uploaded own work with UploadWizard |
You cannot overwrite this file.
File usage on Commons
There are no pages that use this file.
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Software used | |
---|---|
Horizontal resolution | 39.37 dpc |
Vertical resolution | 39.37 dpc |