File:Earth temperature with faint young sun 0p70 sol co2 100pros 1.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,100 × 623 pixels, file size: 205 KB, MIME type: image/png)

Captions

Captions

Earth temperature with faint young sun if S=0.70 sol and CO2=100 per cent of atmosphere pressure

Summary

[edit]
Description
English: Earth temperature with faint young sun if S=0.70 sol and CO2=100 per cent of atmosphere pressure
Date
Source Own work
Author Merikanto

Python 3 code

    1. snowball or slushball earth
    1. climlab python3 source code
  1. 24.10.2023 0000.0003c


import numpy as np import matplotlib.pyplot as plt import xarray as xr import climlab from climlab import constants as const from climlab.dynamics import MeridionalDiffusion

numyears=20

S1_now=1361.5 ## current sol

  1. S1=1*0.93
  2. S1=1*0.416 ## Sucellus planet ts Early mars-like
  3. S1=1357.18*0.7 ## cretaceous impact
    1. 0.93 snowy ball
  4. S1=1365.2*0.82 ## huronian
  5. S1=0.77
  6. S1=1/1
  7. S1=0.44
  8. S1=1/1.15
  1. S1=0.93
  2. S1=0.83 ## huronian
  1. https://www.researchgate.net/publication/2225553_Solar_Models_Current_Epoch_and_Time_Dependences_Neutrinos_and_Helioseismological_Properties

S1=0.939 ## 3.8 Ga from oringin S1=0.954 ## 4.0 Ga S1=0.844 ## 2.4 Ga S1=0.677 # 0 Ga S1=0.721 ## 0.2 Ga

  1. S1=0.744 ##0.6 ga

S1=0.7


albedo=0.25

waterdepth1=5 cloudiness=0.5

S1_abs=S1_now*S1


orbit1={'ecc': 0.0167643, 'long_peri': 280.32687, 'obliquity': 23.459277, 'S0':S1_abs}


    1. faint young sun ch4++
    1. co2=280e-6

co2=1 o3=1/1e6 ch4=800/1e9 no2=270/1e9 o2=1-co2-ch4-no2-o3 ## O2, simulate N2


title0=' Earth and faint young sun ' title1='Temperatures throughout the year °C \n if S0 = '+ str(S1) +'*Ssol , CO2 = '+str(round(co2*1e2,2))+' % , CH4 = '+str(round(ch4*1e6,2))+' ppmv'

print(title1)

  1. quit(-1)
    1. NOTE

absorber_vmr1 = {'CO2':co2,

               'CH4':ch4,
               'N2O':no2,
               'O2':o2,
               'CFC11':1./1e9,
               'CFC12':1./1e9,
               'CFC22':1./1e9,
               'CCL4':1./1e9,
               'O3':o3}



    1. ...

num_lev = 24 ## 50

def plotmonths(Ts, lat): global title1 lela=len(lat) print(np.shape(Ts)) fig = plt.figure( figsize=(8,5) ) ax = fig.add_subplot(111) clevels=10 Tmin=-50 Tmax=50 plt.xticks(fontsize=15) plt.yticks(fontsize=15) cax = ax.contourf(np.arange(365)+0.5, lat, Ts,cmap=plt.cm.coolwarm,vmin=Tmin, vmax=Tmax, levels=256 ) cc = ax.contour(np.arange(365)+0.5, lat, Ts, colors=['#00003f'],) ax.clabel(cc, cc.levels, colors=['#00005f'], inline=True, fmt='%3.1f',fontsize=15) #ax.set_tick_params(axis='both', which='minor', labelsize=15) ax.set_xlabel('Day', fontsize=15) ax.set_ylabel('Latitude', fontsize=15) #cbar = plt.colorbar(cax) #cbar.set_clim(-50.0, 50.0) ax.set_title('Zonal mean surface temperatures (degC)', fontsize=16) return(0)

def plotmonths2(model, Ts, lat): global title1 Tmin=np.min(Ts) Tmax=np.max(Ts) fig = plt.figure(figsize=(5,5)) ax = fig.add_subplot(111) factor = 365. / num_steps_per_year #cmap1=plt.cm.seismic #cmap1=plt.cm.turbo cmap1=plt.cm.coolwarm #cmap1=plt.cm.winter #cmap1=plt.cm.cool_r #cmap1=plt.cm.cool #cmap1=cmap1.reversed() #levels1=[-80,-70,-60,-50,-40,-30] levels2=[-200,-100,-70,-60,-50,-45,-40,-35,-30,-25,-20,-15,-10,-5,0,5,10,15,20,25,30,35,40,45,50,55,60,65,80,100,200,300,500] Tminv=-100 Tmaxv=120 #cax = ax.contourf(factor * np.arange(num_steps_per_year), # ebm.lat, Tyear[:,:], # cmap=cmap1, vmin=Tminv, vmax=Tmaxv, antialiased=False, levels=256) ax.imshow(Ts[:,:],origin="lower", extent=[0,360,-90,90],cmap=cmap1, vmin=Tminv, vmax=Tmaxv, interpolation="bicubic") cs1 = ax.contour(factor * np.arange(num_steps_per_year),model.lat, Ts[:,:], origin="lower", extent=[0,360,-90,90],colors='#00005f', vmin=Tminv, vmax=Tmaxv, levels=levels2) ax.clabel(cs1, cs1.levels, inline=True, fontsize=14) #cbar1 = plt.colorbar(cax) ax.set_title(title1, fontsize=12) fig.suptitle(title0, fontsize=22) ##ax_set_suptitle(title0, fontsize=18) ax.tick_params(axis='x', labelsize=12) ax.tick_params(axis='y', labelsize=12) ax.set_xlabel('Days of year', fontsize=13) ax.set_ylabel('Latitude', fontsize=13) #plt.tight_layout() plt.savefig('1000dpi.svg', dpi=1000) return(0)



                                1. main code



state = climlab.column_state(num_lev=num_lev, num_lat=90, water_depth=waterdepth1) lev = state.Tatm.domain.axes['lev'].points

  1. Define two types of cloud, high and low

cldfrac = np.zeros_like(state.Tatm) r_liq = np.zeros_like(state.Tatm) r_ice = np.zeros_like(state.Tatm) clwp = np.zeros_like(state.Tatm) ciwp = np.zeros_like(state.Tatm)

  1. indices
  2. high = 10 # corresponds to 210 hPa
  3. low = 40 # corresponds to 810 hPa

high=1*2 low=9*2

  1. A high, thin ice layer (cirrus cloud)
  2. r_ice[:,high] = 14. # Cloud ice crystal effective radius (microns)
  3. ciwp[:,high] = 10. # in-cloud ice water path (g/m2)
  4. cldfrac[:,high] = 0.322
  5. A low, thick, water cloud layer (stratus)
  6. r_liq[:,low] = 14. # Cloud water drop effective radius (microns)
  7. clwp[:,low] = 100. # in-cloud liquid water path (g/m2)
  8. cldfrac[:,low] = 0.21
  1. A high, thin ice layer (cirrus cloud)

r_ice[:,high] = 14. # Cloud ice crystal effective radius (microns) ciwp[:,high] = 2. # in-cloud ice water path (g/m2) cldfrac[:,high] = 0.1

  1. A low, thick, water cloud layer (stratus)

r_liq[:,low] = 14. # Cloud water drop effective radius (microns) clwp[:,low] = 4. # in-cloud liquid water path (g/m2) cldfrac[:,low] = 0.05

  1. wrap everything up in a dictionary

mycloud = {'cldfrac': cldfrac,

         'ciwp': ciwp,
         'clwp': clwp,
         'r_ice': r_ice,
         'r_liq': r_liq}
  1. plt.plot(cldfrac[0,:], lev)
  2. plt.gca().invert_yaxis()
  3. plt.ylabel('Pressure hPa')
  4. plt.xlabel('Cloud fraction')
  5. plt.title('Cloud fraction in the column model')
  6. plt.show()
  1. quit(-1)

model = climlab.TimeDependentProcess(state=state, name='Radiative-Convective-Diffusive Model')

h2o = climlab.radiation.ManabeWaterVapor(state=state)

conv = climlab.convection.ConvectiveAdjustment(state={'Tatm':model.state['Tatm']},

                                              adj_lapse_rate=6.5,
                                              **model.param)


sun = climlab.radiation.DailyInsolation(name='Insolation',

                                         domains=state['Ts'].domain, S0=S1_abs, orb=orbit1)


rad = climlab.radiation.RRTMG(state=state,

                             specific_humidity=h2o.q, 
                             albedo=albedo,
                             S0=S1_abs,
                             co2vmr=co2,ch4vmr=ch4,
                             n2ovmr=no2,o2vmr=o2,
                             cfc11vmr=0.0,cfc12vmr=0.00,cfc22vmr=0.00,
                             ccl4vmr=0.0,o3vmr=o3,
                             insolation=sun.insolation,
                             coszen=sun.coszen,
                             absorber_vmr = absorber_vmr1,
                             **mycloud)
    1. no clouds !!!
  1. rad = climlab.radiation.CAM3(name='Radiation', state=state,return_spectral_olr=True,icld=cloudiness,S0 = S1_abs,
  2. insolation=sun.insolation,coszen=sun.coszen,albedo=albedo,absorber_vmr = absorber_vmr3)


model.add_subprocess('Radiation', rad) model.add_subprocess('Insolation', sun) model.add_subprocess('WaterVapor', h2o) model.add_subprocess('Convection', conv)

  1. print(model.subprocess['Radiation'].state)
  1. quit(-1)


    1. thermal diffusivity SI units

D = 0.04

  1. meridional diffusivity SI units

K = D / model.Tatm.domain.heat_capacity[0] * const.a**2 d = MeridionalDiffusion(state={'Tatm': model.state['Tatm']},

                       K=K, **model.param)

model.add_subprocess('Diffusion', d)


shf = climlab.surface.SensibleHeatFlux(state=model.state, Cd=0.5E-3) lhf = climlab.surface.LatentHeatFlux(state=model.state, Cd=0.5E-3)

lhf.q = h2o.q model.add_subprocess('SHF', shf) model.add_subprocess('LHF', lhf)

    1. model.subprocess['LHF'].Cd *= 0.5
    1. 2x co2
  1. model.subprocess['LW'].absorptivity = model.subprocess['LW'].absorptivity*1.1
  1. quit(-1)
  1. One more year to get annual-mean diagnostics
  2. model.step_forward()
  1. model.integrate_years(1.)

model.integrate_years(numyears)

    1. this is very slooow ...
  1. model.integrate_converge()

lat = model.lat

num_steps_per_year = int(model.time['num_steps_per_year'])

Tss = np.empty((lat.size, num_steps_per_year))

for n in range(num_steps_per_year):

       model.step_forward()
       Ts=model.Ts
       Tss[:,n] = np.squeeze(Ts)

plotmonths2(model, Tss-273.15, lat)

plt.show()

print(".")

quit(-1)



Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current11:00, 24 October 2023Thumbnail for version as of 11:00, 24 October 20231,100 × 623 (205 KB)Merikanto (talk | contribs)Update
09:00, 24 October 2023Thumbnail for version as of 09:00, 24 October 20231,061 × 570 (203 KB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.

Metadata