File:Earth like nontilted ocean planet pco2 effect to ts 1 1 1 1.png

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file(884 × 612 pixels, file size: 39 KB, MIME type: image/png)

Captions

Captions

CO2 amount effect to planet mean temperature - Earth-like non-tilted ocean planet

Summary

[edit]
Description
English: CO2 amount effect to planet mean temperature - Earth-like non-tilted ocean planet. Energy balance model.
Date
Source Own work
Author Merikanto

Climlab seasonal EBM-based Python 3.9 source code


                                                                        1. 3
    1. seasonal climlab energy balance model
  1. python3/climblab code
  2. 14.11.2023 0000.0004d2


import math import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import climlab from climlab import constants as const from climlab.process.diagnostic import DiagnosticProcess from climlab.domain.field import Field, global_mean from scipy.interpolate import griddata from skimage.transform import resize



class tanalbedo(DiagnosticProcess):

   def __init__(self, **kwargs):
       super(tanalbedo, self).__init__(**kwargs)
       self.add_diagnostic('albedo')
       Ts = self.state['Ts']
       self._compute_fixed()
   def _compute_fixed(self):
       Ts = self.state['Ts']
       try:
           lon, lat = np.meshgrid(self.lon, self.lat)
       except:
           lat = self.lat
       phi = lat
       try:
           albedo=np.zeros(len(phi));
           albedo=0.42-0.20*np.tanh(0.052*(Ts-3))
       except:
           albedo = np.zeros_like(phi)
       dom = next(iter(self.domains.values()))
       self.albedo = Field(albedo, domain=dom)
   def _compute(self):
       self._compute_fixed()
       return {}


def run_ebm_00(Sk, co2): numyears=30 ##n no function here, run to equil numlat=18 numlev=6 plotvar=0 ## 1,2,3 lot temp, ice, mean albedo waterdepth=20 #S1=1365.2*1 au1=1.00 #Sk=1/math.pow(au1,2) ## relative sun constant to Earth now S1=1361.5*Sk #ecc=0.0167643, #long_peri=280.32687 #obliquity=23.459277 ecc=0 long_peri=0 obliquity=90 #co2=280 ##co2 amount ppmv #co2=280 diffu1=0.3 # meridional diffusivity in m**2/s albedo0=0.28 #orbit={'ecc': 0.0167643, 'long_peri': 280.32687, 'obliquity': 23.459277, 'S0':S1} orbit={'ecc': ecc, 'long_peri': long_peri, 'obliquity': obliquity, 'S0':S1} # creating EBM model #ebm= climlab.EBM(CO2=co2,orbit={'ecc': 0.0167643, 'long_peri': 280.32687, 'obliquity': 23.459277, 'S0':S1}) #ebm0= climlab.EBM_seasonal(water_depth=10.0, a0=0.3, num_lat=90, lum_lon=None, num_lev=10,num_lon=None #, orbit=orbit) ebm0= climlab.EBM_seasonal(water_depth=waterdepth, a0=albedo0, num_lat=numlat, lum_lon=None, num_lev=numlev,num_lon=None) ebm=climlab.process_like(ebm0) #ebm.step_forward() #print(ebm.diagnostics) #quit(-1) surface = ebm.domains['Ts'] # define new insolation and SW process ebm.remove_subprocess('insolation') insolation = climlab.radiation.DailyInsolation(domains=surface, orb = orbit, **ebm.param) insolation.S0=S1 ##sun = climlab.radiation.DailyInsolation(domains=model.Ts.domain) ebm.add_subprocess('insolation', insolation) #ebm.step_forward() #print(insolation.diagnostics) #print (insolation.insolation) #print (np.max(insolation.insolation)) ##print(insolation.S0) #quit(-1) ebm.remove_subprocess('albedo') alb = climlab.surface.albedo.StepFunctionAlbedo(state=ebm.state, Tf=-10, **ebm.param) #alb = climlab.surface.albedo.StepFunctionAlbedo(state=ebm.state, Tf=-20, **ebm.param) #alb = climlab.surface.albedo.ConstantAlbedo(domains=surface, **ebm.param) #alb = tanalbedo(state=ebm.state, **ebm.param) ebm.add_subprocess('albedo', alb) ebm.remove_subprocess('SW') SW = climlab.radiation.absorbed_shorwave.SimpleAbsorbedShortwave(insolation=insolation.insolation, state = ebm.state, albedo = alb.albedo, **ebm.param) ebm.add_subprocess('SW', SW) ebm.remove_subprocess('LW') LW = climlab.radiation.aplusbt.AplusBT_CO2(CO2=co2,state=ebm.state, **ebm.param) ebm.add_subprocess('LW', LW) #print(SW.diagnostics) #quit(-1) #ebm.CO2=co2 ebm.remove_subprocess('diffusion') D=diffu1 # meridional diffusivity in m**2/s #K = D / ebm.Tatm.domain.heat_capacity * const.a**2 K= D/ 700* const.a**2 diff = climlab.dynamics.MeridionalMoistDiffusion(state=ebm.state, timestep=ebm.timestep) ebm.add_subprocess('diffusion', diff) #print (ebm) ebm.step_forward() #ebm.diagnostics #ebm.integrate_years(numyears) #ebm.integrate_years(1) ebm.integrate_converge() #print(ebm.Ts) #plt.plot(ebm.Ts) #plt.show() num_steps_per_year = int(ebm.time['num_steps_per_year']) mean_year = np.empty(num_steps_per_year) for m in range(num_steps_per_year): ebm.step_forward() mean_year[m] = ebm.global_mean_temperature()

Tmean_year = np.mean(mean_year) print(round(Tmean_year,2)) return(Tmean_year)


  1. co2s=[0,1,10,100,1000, 10000, 100000, 1e6]
  1. co2s=[0,10,100, 10000, 1e6]
  1. co2s=[0,1,3,10,30, 100,280, 1000, 3000, 10000, 30000, 100000, 300000, 1e6]

co2s=[0,0.01, 0.1, 0.3,1,3,10,30,50,100,280,400,600, 1000,1500, 2000,3000, 4000, 6000,10000, 30000, 100000, 300000, 1e6]

  1. co2s=[0,1000, 1e6]

Tss=[] lenu=len(co2s)

for n in range(0,lenu): Ts=run_ebm_00(1.0, co2s[n]) print(co2s[n],Ts) Tss.append(Ts)


co2t=np.array(co2s) Tst=np.array(Tss)

plt.plot(np.log10(co2t), Tst, lw=3, color="#000000") plt.title("Earth-like ocean planet CO2 --- T", fontsize=16) plt.xlabel("Logarithm of CO2 amount (log10 pCO2 ppmvol)", fontsize=12) plt.ylabel("Mean temperature degC", fontsize=12) plt.axhline(y=100, linestyle="--", color="blue", lw=2, label="Water boils") plt.axhline(y=0, linestyle="--", color="blue", lw=2, label="Water freezes")

plt.scatter(math.log10(280), 13.8, s=200, marker="o", color="green")

plt.xticks(fontsize=12) plt.yticks(fontsize=12)



plt.show()


quit(-1)


    1. plotting routines


if(plotvar==0):

       num_steps_per_year = int(ebm.time['num_steps_per_year'])
       Tyear = np.empty((ebm.lat.size, num_steps_per_year))
       for m in range(num_steps_per_year):
           ebm.step_forward()
           Tyear[:,m] = np.squeeze(ebm.Ts)
       Tmin=round(np.min(Tyear),1)
       Tmax=round(np.max(Tyear),1)
       
       #Tmean=round( np.mean(Tyear),1)
       tmeans1=np.mean(Tyear, axis=1)
       #print (ebm.lat)
       latrads1=np.radians(ebm.lat)
       latcoeffs1=np.power(np.cos(latrads1),2)
       tmeans2=tmeans1*latcoeffs1
       Tmean=np.mean(tmeans2)
       #print (np.shape(tmeans1))
       #quit(-1)        
       fig = plt.figure(figsize=(5,5))
       ax = fig.add_subplot(111)
       
       factor = 365. / num_steps_per_year
       cmap1=plt.cm.seismic
       cmap1=plt.cm.winter
       cmap1=plt.cm.coolwarm
       #cmap1=plt.cm.cool_r
       #cmap1=plt.cm.cool
       #cmap1=cmap1.reversed()      
       #levels1=[-80,-70,-60,-50,-40,-30]
       levels2=[-200,-150,-120,-100,-70,-60,-50,-40,-30,-20,-10,0,5,10,15,20,25,30,35,40,45,50,60,70,80,90,100,120,150,300]
       Tyear2 = resize(Tyear, (Tyear.shape[0] *3, Tyear.shape[1]*2),anti_aliasing=True)
       ax.imshow(Tyear, origin="lower", extent=[0,360,-90,90], cmap=cmap1, interpolation="bicubic")
       #cax = ax.contourf(factor * np.arange(num_steps_per_year),
       #              ebm.lat, Tyear[:,:], 
       #              cmap=cmap1, vmin=Tmin, vmax=Tmax, antialiased=False, levels=levels2)
       cs1 = ax.contour(factor * np.arange(num_steps_per_year), ebm.lat,Tyear[:,:],
                     origin="lower", extent=[0,360,-90,90], alpha=0.5, 
                     colors='#00005f', vmin=Tmin, vmax=Tmax, levels=levels2)
       ax.clabel(cs1, cs1.levels, inline=True, fontsize=14)                     
       #cbar1 = plt.colorbar(cax)
       title1='Temperatures degC of planet, if ecc='+str(round(ecc,3))++str(round(long_peri,2))+' and obliquity='+str(round(obliquity,2))+' deg \n if S0= '+ str(round(S1,1)) +' W m-2 , pressure of CO2= '+str(round(co2,2))+' ppm volume'
       title2="\nTemperature deg C:  min "+str(round(Tmin,2))+" max "+str(round(Tmax,2))+" mean "+str(round(Tmean,2))
       #ax.set_suptitle(title1, fontsize=12)
       ax.set_title(title1+title2, fontsize=11)
       ax.tick_params(axis='x', labelsize=12)
       ax.tick_params(axis='y', labelsize=12)
       ax.set_xlabel('Days of year', fontsize=13)
       ax.set_ylabel('Latitude', fontsize=13)
       plt.savefig('1000dpi.svg', dpi=1000)



if(plotvar==1):

       if 'Tf' in ebm.subprocess['albedo'].param.keys():
           Tf = ebm.subprocess['albedo'].param['Tf']
       else:
           print('No ice considered in this model. Can not plot.')
       num_steps_per_year = int(ebm.time['num_steps_per_year'])
       ice_year = np.empty((ebm.lat.size, num_steps_per_year))
       for m in range(num_steps_per_year):
           ebm.step_forward()
           ice_year[:,m] = np.where(np.squeeze(ebm.Ts) <= Tf, 0, 1)
       
       fig = plt.figure(figsize=(5,5))
       ax = fig.add_subplot(111)
       
       factor = 365. / num_steps_per_year
       cax = ax.contourf(factor * np.arange(num_steps_per_year),
                     ebm.lat, ice_year[:,:], 
                     cmap=plt.cm.seismic, vmin=0, vmax=1, levels=2)
       cbar1 = plt.colorbar(cax)
       
       ax.set_title('Ice throughout the year', fontsize=14)
       ax.set_xlabel('Days of year', fontsize=14)
       ax.set_ylabel('Latitude', fontsize=14)


if(plotvar==2):

       fig = plt.figure(figsize=(7.5,5))
       # Temperature plot
       ax2 = fig.add_subplot(111)
       ax2.plot(ebm.lat,ebm.albedo)
       ax2.set_title('Albedo', fontsize=14)
       ax2.set_xlabel('latitude', fontsize=10)
       ax2.set_ylabel(, fontsize=12)
       ax2.set_xticks([-90,-60,-30,0,30,60,90])
       ax2.set_xlim([-90,90])
       ax2.set_ylim([0,1])
       ax2.grid()
   
       plt.show()


plt.suptitle("Planet that has 90 obliquity") plt.title("Temperature deg C") plt.legend() plt.show()


Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current12:15, 14 November 2023Thumbnail for version as of 12:15, 14 November 2023884 × 612 (39 KB)Merikanto (talk | contribs)Update: more intervals
11:56, 14 November 2023Thumbnail for version as of 11:56, 14 November 2023914 × 602 (40 KB)Merikanto (talk | contribs)Uploaded own work with UploadWizard

There are no pages that use this file.

Metadata