File:Crystal Structure as Lattice and Basis.gif
From Wikimedia Commons, the free media repository
Jump to navigation
Jump to search
Size of this preview: 800 × 374 pixels. Other resolutions: 320 × 149 pixels | 923 × 431 pixels.
Original file (923 × 431 pixels, file size: 3.47 MB, MIME type: image/gif, looped, 147 frames, 15 s)
File information
Structured data
Captions
Summary
[edit]DescriptionCrystal Structure as Lattice and Basis.gif |
English: Once we have the Bravais lattice, we can fully describe a crystal structure by specifying how the atoms are arranged around the lattice points (i.e. the "basis"). |
Date | |
Source | https://mathstodon.xyz/@j_bertolotti/112489920832771942 |
Author | Berto |
Permission (Reusing this file) |
https://mathstodon.xyz/@j_bertolotti/111363365323269417 |
Mathematica 14.0 code
[edit]sinstep[t_] := Sin[\[Pi]/2 t]^2
frames1 = Table[
a1 = {1, 0}; a2 = {0, 1};
basis1[point_] := point - {0.25*sinstep[t], 0};
basis2[point_] := point + {0.25*sinstep[t], 0};
bravais = Flatten[Table[n1 a1 + n2 a2, {n1, -20, 20}, {n2, -20, 20}], 1];
Grid[{{"Bravais Lattice", "", "Basis", "", "Crystal"}, {
Graphics[{Gray, Table[Disk[n1 a1 + n2 a2, 0.05], {n1, -20, 20}, {n2, -20, 20}]}, PlotRange -> {{-6, 6}, {-6, 6}}, Frame -> True, FrameTicks -> None, FrameStyle -> Directive[Black, Thick], ImageSize -> 300 ]
, Text[Style["\[Star]", Bold, Black, FontSize -> 20]],
Graphics[{Gray, Disk[{0, 0}, 0.05], Black, Disk[basis1[{0, 0}], 0.1], Disk[basis2[{0, 0}], 0.1]}, PlotRange -> 1.1*{{-1, 1}, {-1, 1}} , ImageSize -> 50]
, Text[Style["=", Bold, Black, FontSize -> 20]],
Graphics[{Gray, Disk[#, 0.05] & /@ bravais, Black, Disk[basis1[#], 0.1] & /@ bravais, Disk[basis2[#], 0.1] & /@ bravais }, PlotRange -> {{-6, 6}, {-6, 6}}, Frame -> True, FrameTicks -> None, FrameStyle -> Directive[Black, Thick] , ImageSize -> 300]
}}]
, {t, 0, 1, 0.05}];
frames2 = Table[
a1 = {1 + sinstep[t], 0};
a2 = {sinstep[t], 1 + (Sqrt[3]/2 - 1)*sinstep[t]};
basis1[point_] := point - {0.25, 0};
basis2[point_] := point + {0.25, 0};
bravais = Flatten[Table[n1 a1 + n2 a2, {n1, -20, 20}, {n2, -20, 20}], 1];
Grid[{{"Bravais Lattice", "", "Basis", "", "Crystal"}, {
Graphics[{Gray, Table[Disk[n1 a1 + n2 a2, 0.05], {n1, -20, 20}, {n2, -20, 20}]}, PlotRange -> {{-6, 6}, {-6, 6}}, Frame -> True, FrameTicks -> None, FrameStyle -> Directive[Black, Thick], ImageSize -> 300 ]
, Text[Style["\[Star]", Bold, Black, FontSize -> 20]],
Graphics[{Gray, Disk[{0, 0}, 0.05], Black, Disk[basis1[{0, 0}], 0.1], Disk[basis2[{0, 0}], 0.1]}, PlotRange -> 1.1*{{-1, 1}, {-1, 1}} , ImageSize -> 50]
, Text[Style["=", Bold, Black, FontSize -> 20]],
Graphics[{Gray, Disk[#, 0.05] & /@ bravais, Black, Disk[basis1[#], 0.1] & /@ bravais, Disk[basis2[#], 0.1] & /@ bravais }, PlotRange -> {{-6, 6}, {-6, 6}}, Frame -> True, FrameTicks -> None, FrameStyle -> Directive[Black, Thick] , ImageSize -> 300]
}}]
, {t, 0, 1, 0.05}];
frames3 = Table[
a1 = {2, 0}; a2 = {1, Sqrt[3]/2};
basis1[point_] := point - {0.25 Cos[2 \[Pi] sinstep[t]], 0.25 Sin[2 \[Pi] sinstep[t]]};
basis2[point_] := point + {0.25 Cos[2 \[Pi] sinstep[t]], 0.25 Sin[2 \[Pi] sinstep[t]]};
bravais = Flatten[Table[n1 a1 + n2 a2, {n1, -20, 20}, {n2, -20, 20}], 1];
Grid[{{"Bravais Lattice", "", "Basis", "", "Crystal"}, {
Graphics[{Gray, Table[Disk[n1 a1 + n2 a2, 0.05], {n1, -20, 20}, {n2, -20, 20}] }, PlotRange -> {{-6, 6}, {-6, 6}}, Frame -> True, FrameTicks -> None, FrameStyle -> Directive[Black, Thick], ImageSize -> 300 ]
, Text[Style["\[Star]", Bold, Black, FontSize -> 20]],
Graphics[{Gray, Disk[{0, 0}, 0.05], Black, Disk[basis1[{0, 0}], 0.1], Disk[basis2[{0, 0}], 0.1]}, PlotRange -> 1.1*{{-1, 1}, {-1, 1}} , ImageSize -> 50]
, Text[Style["=", Bold, Black, FontSize -> 20]],
Graphics[{Gray, Disk[#, 0.05] & /@ bravais, Black, Disk[basis1[#], 0.1] & /@ bravais, Disk[basis2[#], 0.1] & /@ bravais}, PlotRange -> {{-6, 6}, {-6, 6}}, Frame -> True, FrameTicks -> None, FrameStyle -> Directive[Black, Thick] , ImageSize -> 300]
}}]
, {t, 0, 1, 0.05}];
frames4 = Table[
a1 = {1, 0}; a2 = {0, 1};
basis1[point_] := point - {0.25, 0};
basis2[point_] := point + {0.25, 0};
basis3[point_] := point + {0.25 - 0.25*sinstep[t], 0.5*sinstep[t]};
bravais = Flatten[Table[n1 a1 + n2 a2, {n1, -20, 20}, {n2, -20, 20}], 1];
Grid[{{"Bravais Lattice", "", "Basis", "", "Crystal"}, {
Graphics[{Gray, Table[Disk[n1 a1 + n2 a2, 0.05], {n1, -20, 20}, {n2, -20, 20}]}, PlotRange -> {{-6, 6}, {-6, 6}}, Frame -> True, FrameTicks -> None, FrameStyle -> Directive[Black, Thick], ImageSize -> 300 ]
, Text[Style["\[Star]", Bold, Black, FontSize -> 20]],
Graphics[{Gray, Disk[{0, 0}, 0.05], Black, Disk[basis1[{0, 0}], 0.1], Disk[basis2[{0, 0}], 0.1], Disk[basis3[{0, 0}], 0.1]}, PlotRange -> 1.1*{{-1, 1}, {-1, 1}} , ImageSize -> 50]
, Text[Style["=", Bold, Black, FontSize -> 20]],
Graphics[{Gray, Disk[#, 0.05] & /@ bravais, Black, Disk[basis1[#], 0.1] & /@ bravais, Disk[basis2[#], 0.1] & /@ bravais, Disk[basis3[#], 0.1] & /@ bravais}, PlotRange -> {{-6, 6}, {-6, 6}}, Frame -> True, FrameTicks -> None, FrameStyle -> Directive[Black, Thick] , ImageSize -> 300]
}}]
, {t, 0, 1, 0.05}];
ListAnimate[Join[frames1, frames2, frames3, Reverse[frames2], frames4, Reverse[frames4], Reverse[frames1]]]
Licensing
[edit]I, the copyright holder of this work, hereby publish it under the following license:
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 13:54, 24 May 2024 | 923 × 431 (3.47 MB) | Berto (talk | contribs) | Uploaded own work with UploadWizard |
You cannot overwrite this file.
File usage on Commons
There are no pages that use this file.